
Programming on continuous spaces
Ben Sherman

May 3, 2016

1 Introduction
Space, time, magnitude, and infinite streams of data are well-modeled by con-
tinuous spaces. We may wish to write computer programs which manipulate
these concepts, and so desire a programming language which faithfully rep-
resents these concepts. Such a language would make it easier to understand
the (extensional) behavior of such programs, which is particularly useful in the
context of theorem proving.

I am building a Coq framework for reasoning about probability, whose con-
cepts are most naturally expressed in the language of topology. Accordingly, I
am also formalizing a theory of topology called formal topology; its constructive
nature means that formal topology can also be viewed as a programming lan-
guage embedded in Coq in which data types correspond to topological spaces,
and functions correspond to continuous maps.

These notes explain how this programming language for topology works, and
how we can use it to solve the following task: 1

Given an “arbitrary” f : [0, 1]→ R, find the maximum value that it
attains.

2 The real numbers
The real numbers, R, are one of the most interesting topological spaces, and
many computer programs operate on data which are meant to represent real
numbers. A common solution is to use floating point numbers rather than R,
but programming languages provide few guarantees as to how faithfully pro-
grams written using floating point numbers represent the idealized programs
that operate on R. Designing floating point computations which do provide
such guarantees is a daunting task, and reasoning about the difference between
the floating point and the idealized computations is challenging.

1What does “arbitrary” mean? For now I will leave its interpretation open. In general, this
article seems to make a habit of being unclear, hand-wavy, or sometimes just plain false, in
support of the larger purpose of conveying the general idea of formal topology without getting
bogged in the details. Some of these copious footnotes try to clarify the unclear and correct
the errors, at the cost of perhaps getting mired in the details.

1

Mathematically, the real numbers are defined as sequences of rational ap-
proximations, x : N→ Q, which are coherent and ever-narrowing; for instance,
the x(n) may approximate x to within a distance 1/n. 2 It is possible to use
this encoding to faithfully represent real numbers as higher-order functions in a
programming language. Note that different sequences may represent the same
real number. Then a function f : R → R in fact is a transformer of sequences,
f : (N→ Q)→ (N→ Q).

It is a remarkable fact that, as long as real numbers x : N→ Q may be black
boxes where one can only learn about them by querying for approximations
x(n), then any computable function f must be continuous. Given some x : R
and some desired precision ε = 1/n, f must compute f(x)(n) in finite time.
Therefore, it must only look at finitely many entries of the sequence x, so if the
maximum index it looks at is m, it can only determine x to within δ = 1/m,
and therefore for any other x′ whose distance from x is less than δ, the f(x)
and f(x′) must differ by no more than ε. 3

Let’s return to the task in the introduction. It’s quite difficult using the
floating point representation: notice that a function f : [0, 1] → R might not
even have a maximum if it is not continuous. Despite the general appeal of
providing functionality which would find a maximum over black box functions,
not even MATLAB offers a tool to do so; the closest MATLAB comes is in
its fminbnd function, which uses advanced numerical techniques to find a local
maximum of a “continuous” floating point function.

If we encode R as sequences N → Q, the task is still difficult, because even
though we are sure f : R → R is continuous, we don’t know “how” continuous
it is, and we have no way to inspect its continuity. 4

2Formally, they satisfy a condition such as: for all m,n : N, |x(m)− x(n)| ≤ 1/m+ 1/n.
3LEJ Brouwer made this observation and postulated the existence of “free choice se-

quences,” lawless sequences whose values are unconstrained other than at the entries where
they have already been observed. As a consequence, he derived Brouwer’s continuity princi-
ple, which states that for every property of sequences P : (N → N) → B and every sequence
α : N → N, there is some point at which P stopped inspecting α. That is, for some n : N, it
only look at the first n entries of the sequences, such that for every β : N → N which shares
the same length-n prefix as α, the result P (α) = P (β). As a consequence, he found that
all functions on R → R are continuous, and refuted the law of the excluded middle, which
says that every logical proposition is either true or false. The concept of “formal topology”
explained in this article gives a way to give computational meaning to Brouwer’s concepts of
choice sequences.

4We know that f , when outputting an approximation, only reads a finite approximation of
its input. If we could tell how closely f looks at its input, we could actually find the maximum
of f . In many programming languages, it is possible to use effects such as mutable state or
exceptions to inspect how continuous f is. However, without such powers, this is impossible
to determine.
This is related to the fact that, using the definitions of point-set topology, the Heine-Borel

property, which says that every open cover of the unit interval [0, 1] has finite subcover, is
undecided in constructive mathematics. Adding either the law of the excluded middle or
Brouwer’s continuity principle proves the Heine-Borel property, but there is a counterexample
in the realizability model. A significant motivation of formal topology is to formulate topology
such that there is a constructive proof of the Heine-Borel property.

2

3 An analogy
The fact that encoding R as sequences of approximations forces computable
functions f : R→ R to be continuous suggests a close connection between com-
puter programs and topology, and that a programming language for continuous
spaces might be quite expressive.

There are many analogous concepts in computer programs and topology. If
you are familiar with one of the two, but not the other, the following dictionary
can effectively give a good intuition for the other one. 5

computer programs topology
X data type topological space

f : X → Y function continuous map
x : X value point

P : X ⇀ B “affirmable” property (semidecidable) open subset
P : X ⇁ B “refutable” property (semidecidable) closed subset
P : X → B decidable property clopen subset

An “affirmable” property is a property that can be verified by a semidecision
procedure: if the property holds, then the procedure will halt and return true,
whereas if the property does not hold, the program may never terminate. A
“refutable” property is a property that can be refuted by a semidecision proce-
dure: if the property doesn’t hold, the procedure halts and returns true, whereas
if the property does hold, the program may never terminate.

We can intuit some of the fundamental facts of topology by simply translat-
ing across the dictionary. For instance,

Theorem 1. If f : X → Y is continuous, and U ⊆ X is open, then f−1(U) ⊆ X
(the set of points which f maps to U) is open.

Proof. Suppose P : Y ⇀ B semidecides membership in U . Then the composi-
tion P ◦ f : X ⇀ B semidecides whether f maps a point x : X to U , that is, it
semidecides membership in f−1(U).

Theorem 2. Finite intersections of open sets are open. (Finite unions of closed
sets are closed.)

Proof. Given many semideciders P1, . . . , Pn : X ⇀ B, run each of them and
check that they all terminate and return true.

Theorem 3. Countable unions of open sets are open. (Countable intersections
of closed sets are closed.)

5It may be surprising that functions and values have very different interpretations in topol-
ogy, given that functions are values in higher-order functional programming languages. The
difference is that, for any types X and Y , we also have a function type X → Y , but for
topological spaces X and Y , it may be impossible to create a topological space of functions
X → Y which behaves well enough.

3

Proof. Given an enumeration of semideciders P1, P2, . . . : X ⇀ B, run all of
them in parallel (via time-slicing), and halt and return true if any of the sub-
programs does so.

With computational intuition, we observe the subset U = {x | x > 0} ⊆ R
is open: Given x : R presented as a sequence of approximations, we read each
successive approximation, and check whether it is still possible that x ≤ 0. If
in fact x > 0, then we must also have that for some ε > 0, x − ε > 0, and
eventually we will refine our approximation far enough to observe this.

Intuitively, an open set is a property which, when true for a point, is also
true in a small vicinity of that point as well.

4 Formal topology
We still have yet to provide a framework provides a clear formulation of how to
represent continuous spaces, or one which yields a simple solution to the task
of maximizing some f : [0, 1]→ R.

In this section, we will describe such a framework, which is known as formal
topology. 6 The key idea is to view points in a continuous space as interaction
structures: one can iteratively refine one’s state of knowledge about a point by
asking certain questions and receiving answers. So the interaction involved in
determining information about a point is explicit, whereas it is implicit when,
say, modeling R as sequences N → Q in a functional programming language.
Rather than starting with points, and building a topology on top, we will directly
formalize the interactions for a given topological space in terms of two notions:
basic opens and open covers. By taking open sets as primitives rather than
points, we can force continuous functions to “explain their work”, which will
allow us to maximize a function f : [0, 1]→ R.

The basic opens of a space are formal objects which are “rich enough” to
describe the space. 7 For defining the real numbers R in topology, it suffices
to take pairs of rational numbers, Q × Q, where a formal open (p, q) (we will
additionally require p < q) is meant to represent the open interval (p, q). 8 We
can think of basic opens as representing different possible states of knowledge
about a point.

In the point-set based topology we previously considered, an open cover U
of an open set V is a collection of open subsets which cover V ; that is, V ⊆⋃

U∈U U . So an open cover is a collection of possible refinements. Intuitively,
we can think of an open cover U of V as a question to ask of a point x ∈ V that
will certainly succeed: since x lies in V , if we run the collection of semi-deciders

6Formal topology is a theory that was invented in the 1980s to try to give a constructive
and predicative account of topology.

7The basic opens should represent a base of open sets for the space, which means that any
open set can be represented as a union of basic opens.

8The notational collision of open intervals and pairs is unfortunately confusing in this case,
as the pair (p, q) : Q×Q is meant to represent the interval (p, q) : R→ P, but recognizing the
distinction between the types is important.

4

Figure 1: An open cover

U in parallel, one will eventually halt, and therefore we will know that for some
U ∈ U , we have x ∈ U . So open covers represent “safe” questions to ask of a
point to refine our state of knowledge about a point.9

In formal topology, we directly axiomatize the open covers as an inductive
type. Given some basic open a : S and a subset U ⊆ S, the proposition a C U
indicates whether U covers a, that is, whether U is a “legitimate question” to
ask of points in a.

For the real numbers, we inductively generate the covering relation by the
following rules: 10

p′ ≤ p < q ≤ q′

(p, q) C {(p′, q′)}
narrow

r < p < u < s < q < v

(p, q) C {(r, s), (u, v)}
split

(p, q) C {(x, y) | p < x < y < q}
inside

(p, q) C {(p, q)}
reflexivity

(p, q) C U U C V

(p, q) C V
transitivity

The rules narrow, split, and inside describe the structure of the real
line, while the rules reflexivity and transitivity describe the composition
structure of valid questions: we can ask a trivially answerable question, and we
can chain together questions to form “plans of investigation” of a point.

9A point may lie in many open sets of an open cover, in which case several responses are
possible, and equivalent points may make different choices in their response.

10The hypothesis U C V in the transitivity rule has a subset on the left-hand side; this
notation is simply shorthand for ∀(p, q) ∈ U, (p, q) C V . Still, the transitivity rule looks
like it is potentially not well-founded, so one should not interpret these rules directly as the
constructors of an inductive type. However, it is possible to inductively generate a cover
relation (where the constructors look slightly different) which satisfies all of these rules.

5

4.1 Points
We then define the points of our space as those structures which are able to
respond to valid questions. For a space with basic opens S, a point x is defined
a subset of the basic opens S satisfying certain properties. Intuitively, x is
defined as the subset of basic opens which it lies in. We will use the notation
x |= a (read “x lies in a”)11 for a basic open a : S if a ∈ x. Then a point satisfies
the following rules: 12

∃a, x |= a
start

x |= a a C U

∃b ∈ U, x |= b
respond

The start rule gives us our starting state of knowledge for a point x. Note that
there may be a basic open which represents the whole space, and any point may
start by saying that it lies in the whole space. The respond rule says that if
we ask the point x a valid question, we will get a response and update our state
of knowledge.

For a point x of R, the start rule says that x will initially tell us that it
lies in some open interval (a, b). It could be particularly useful to form open
covers using split and transitivity; for instance, we could cover any basic
open with open intervals of length ε in order to approximate a point to within
ε.

4.2 Functions
In point-set topology, continuous functions f : X −→ Y were those such that
for any open set U ⊆ Y, the set f−1(U) (the set of points which map to U under
f) is open.

Since opens are now the primitive objects, we will simply directly define
the continuous functions by their inverse images. For formal spaces with basic
opens S and T , a continuous function f from the space on S to the space on T
is a relation f−1 where, for a basic open t : T , f−1(t) ⊆ S represents the basic
opens which map to t under f .

The computational meat of continuous functions is that they are ques-
tion/response transformers, satisfying the following rule, where a : S and U ⊆ S:

11The choice of the symbol |= is not accidental. We can read the rules of open covers as
a logical sequent calculus, where the basic opens represent propositional variables, and the
open cover a C {u1, u2, . . .} represents

a ` u1, u2, . . .

That is, the truth of a implies the truth of either u1, or u2, and so on. Then reflexivity
corresponds to the identity sequent a ` a and transitivity represents a sort of infinitary cut
rule. Then a point in the space is, by its definition, a model of this logic, assigning consistent
truth values to all of the propositional variables.

12A point must satisfy additional properties as well, but this is beyond the scope of this
article.

6

13

a CT U

f−1(a) CS f−1(U)

That is, a continuous function transforms questions about its outputs into
questions about its inputs!

5 Maximizing a function f : [0, 1]→ R
Using formal topology, we are now able to solve the initially posed task: to
maximize a black-box function f : [0, 1]→ R.

We shall be bold, and try to implement the maximum point y = maxx∈[0,1] f(x)
by implementing its two rules, start and respond. To simplify the problem,
we can assume that we have allowed a basic open >R which represents the whole
space, so that our point implements the start with this basic open.

Now, suppose that y is issued a question >R C U , so y must respond with
which interval (p, q) ∈ U it lies in. For concreteness, we might imagine that U
is a covering of the real line using infinitely many intervals of the small width
ε. Which interval should y pick? Intuitively, it should pick the highest one
possible, i.e., the highest interval that f actually reaches. Using the fact that f
is a question transformer, we transform this cover into f−1(>R) C f−1(U), i.e.,
[0, 1] C f−1(U). 14 The Heine-Borel property states that any open cover of the
closed interval must have finite subcover. In formal topology, we can actually
compute this finite subcover by induction on the derivation of the cover. In this
specific case, we can compute some finite V such that f−1(V) ⊆ f−1(U) (we
can also choose V such that for all v ∈ V , f−1(v) is inhabited).

Now we have a finite set V of open intervals where each open interval (a, b) ∈
V is reached by f . We can simply iterate over the intervals in V and choose
the interval with the highest maximum. So the point y = maxx ∈[0,1] f(x) will
say that it lies in that basic open, and is able to successfully implement the
respond rule. In the specific case where the point y is asked to respond to an
open cover of intervals of width ε, the response will approximate y to within ε!

6 Conclusion
What have we gained by describing topological spaces using formal topology? At
this point, it may not seem that being able to maximize a function f : [0, 1]→ R
justifies the conceptual overhead (while it is a neat trick!). But stepping back

13For a subset U , we define f−1(U) = {c | b ∈ U, c ∈ f−1(b)}.
14Note that here we have what appears to be a closed set on the left-hand side of the basic

cover. Given that the complement of [0, 1] is the open set
⋃
{(−∞, 0), (0,∞)}, the notation

[0, 1] C f−1(U) in fact means

>R C {(−∞, 0), (0,∞)} ∪ f−1(U).

7

from this example, we see that there are benefits to redefining topology in a
style amenable to type theory. What results is a framework which is

• general enough to represent all “reasonable” topological spaces and con-
tinuous functions,

• executable, so that programs described as continuous functions can be run,

• and semantically faithful, in that reasoning about “programs” in formal
topology is just reasoning about continuous functions and spaces them-
selves.

8

