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0.1 Introduction and motivating examples

The purpose of this note is to explain how the notion of pattern matching in functional programming
can be generalized to programming with continuous spaces, where the patterns should be allowed
to overlap. This notion of pattern matching highlights the centrality of open covers, locality, and
non-determinism for programming continuous functions.

The idea arose from assimilating two example programs. One is a toy example that I now like to
call “Buridan’s autonomous car.” An autonomous car is approaching a yellow light and must decide
whether to stop for the light or to proceed past the intersection. We imagine that the car’s state
is parameterized only by its distance from the light, a real number (R), and that its output should
be Boolean-valued (B), indicating whether or not to brake. If the car is very far backwards, then
the car should certainly brake, but if it is very far forwards, it should certainly proceed through
the intersection, so the decision should not be a constant function. However, we notice that since
the constant functions are the only possible continuous maps from R to B (in topological jargon, R
is connected), we must do something else.

That “something else” is to allow non-determinism in the output decision. If it is both safe to
stop as well as safe to go, it’s alright to make either decision, even if one sometimes makes different
decisions based on the same exact input value. There is space P+

♦ (B) of non-empty subsets of B
which should be the return value of the braking decision, rather than B itself. Then we can write
the following function to specify the braking behavior:

brake? : R→ P+
♦ (B)

brake?(s) , cases(s)

{
· > −1 =⇒ {false}
· < 0 =⇒ {true}.

Note that while the two cases do indeed cover the entire space R, they overlap. The computa-
tional interpretation is that the scrutinee of a cases expression is allowed to choose any case which
it satisfies and then exhibit the behavior in that branch. Therefore, the result behavior is the union
of the behaviors of all possible branches. If an input satisfies two cases, such as −0.5 : R in the
above definition, then its “behavior” is the “maximum” of {true} and {false}, which in this case is
{true, false}. It is not always the case it’s possible to take a union of behaviors of several programs,
as it is here (in fact, this union exists for any two expressions of type P♦(A) for any A). In fact, as
long as one can produce a maximum of two branches, when restricted to the intersection of their
domains, then the cases expression will be well-defined.

The other example is the definition of multiplication of real numbers. It’s quite different from
the previous example: the pattern match has infinitely many cases (all overlapping each other), and
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produces a deterministic function. I have defined the real numbers R using a generic construction
of completion of metric spaces, taking the space R as the metric completion of the set Q. The
main construction that I have allows Lipschitz functions defined on metric “sets” (e.g., the set Q
with its relevant metric) to be lifted to their metric completions. This is quite general, but already
multiplication of real numbers is not Lipschitz, and therefore cannot be defined as the extension of
multiplication of rational numbers. However, multiplication is locally Lipschitz; if one restricts one
of the factors to have absolute value bounded by L, then L is a satisfactory Lipschitz constant for
the multiplication. Therefore, it is possible to define multiplication with the overlapping pattern
match

× : R× R→ R

x× y , cases(x)
{

[L : Q+] x′ |= −L < · < L =⇒ scaleL(x′, y) ,

where we have the family of functions scaleL : {R | − L < · < L} × R→ R 1 for L : Q+ which are
directly defined as the extension of Lipschitz functions on the rationals. In this definition, notice
that we “bind” the pattern variable x′ as a variable of type {R | − L < · < L}.

To prove that the above definition is in fact valid, we must show that the cases suffice to cover
R, and that any two branches have a “maximum” on their region of overlap. The former should be
clear, and we should be able to prove that branches always agree exactly on their region of overlap,
so that maximum exists: it’s the same as either branch. These proofs confirm the validity of the
above definition and provide computational content so that the function can be run.

0.2 Patterns using sites of the gros topos

Let’s get into the details, and in particular, we will generalize the notion of open covers to sites,
which make for more convenient pattern matching.

First, some preliminary notions. For any two spaces X and Y , let X ∼= Y indicate that the
spaces X and Y are homeomorphic, meaning that we have exhibited continuous maps f : X → Y
and g : Y → X such that g ◦ f = idX as well as f ◦ g = idY . We call a map f : A→ B is an open
embedding if f(A) is open and A ∼= f(A). The notation f : A ↪→ B indicates that the continuous
map f : A→ B is an open embedding.

The gros topos over Top, the category of topological spaces and their continuous maps, is
a Grothendieck topos whose site is Top endowed with the coverage where a collection of open
embeddings (fi : Ai ↪→ B)i:I is considered a cover if⋃

i:I

fi(Ai) = B.

In the case where a cover (fi : Ai ↪→ B)i:I is disjoint, i.e., if i 6= j, then fi(Ai)∩fj(Aj) is empty,
then we recover the ordinary notion of pattern matching. For instance, for two spaces L,R : Space,
we have the disjoint covering (often called a partition)

{inl : L ↪→ L + R , inr : R ↪→ L + R},
1For a space A and open U : O(A), the notation {A | U} indicates the open subspace U of A.

2



and accordingly we define functions on coproducts via pattern matching, just as is possible in any
functional programming language:

either(f : L→ A)(g : R→ A)(x : L + R) : A , cases(x)

{
inl(`) =⇒ f(`)

inr(r) =⇒ g(r)

We can imagine that this is “run” on points in the following way. First, a point x : L + R is
presented with the open cover

> `L+R inl(L) ∨ inr(R).

Suppose we have that x is actually on the L side, so that we learn x |= inl(L). Therefore, we now
have a point x′ : {L + R | inl(L)}. Since we have proved that inl is an open embedding, there is a
map inl−1 : {L + R | inl(L)} ↪→ L, and so we can define ` , inl−1(x′), and then follow the first case
branch to compute f(`) as the result.

Now, let’s define the unique polymorphic map

distr(x : A×B + A× C) : A , cases(x)

{
inl(a, b) =⇒ a

inr(a, c) =⇒ a

Here, we have introduced the new notion that we can pattern match on products. The way that
we “execute” this is, for instance, looking at the first branch, if we’ve already computed ` : A×B as
was previously described, we simply define a , fst(`) and b , snd(`). This sort of pattern matching
seems to be specific for product spaces.

Additionally, I’ll note that sites (or Grothendieck pretopologies2?) should have the singleton
cover which is the whole space (“reflexivity”), which corresponds to a pattern which may change
to an isomorphic space but doesn’t really break it apart, as well as a notion of composition of
covers (“transitivity”), which corresponds to the potential to nest patterns. For instance, given the
homeomorphism add3 : Z ↪→ Z, we can get the inverse map using a pattern,

subtract3 : Z→ Z

subtract3(x) , cases(x)
{
add3(y) =⇒ y .

Recall that this is not very impressive, since proving that add3 is an open embedding requires
providing such an inverse map in the first place.

In general, the covers will not be disjoint, so we need to deal with what happens when different
cases overlap. For instance, consider the autonomous car which needs to decide whether to brake
as it approaches a yellow light:

brake? : R→ P+
♦ (B)

brake?(s) , cases(s)

{
x |= · > −1 =⇒ {false}
y |= · < 0 =⇒ {true}

The syntax for this style of pattern match is up in the air. We note that we have the cover

> `R · > −1 ∨ · < 0,

2See https://ncatlab.org/nlab/show/Grothendieck+pretopology.
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and we can identify the open · > −1 : O(R) with an open embedding {R | · > −1} ↪→ R. The
pattern x |= · > −1 is supposed to indicate that x : {R | · > −1} is the variable that was “injected”
into R by that open embedding. Though in this particular case, the x and y patterns in the case
expression aren’t even used.

We imagine the same process for computing the result of this expression, in some sense. We
first present our input point s with the appropriate cover, and then follow that branch. But what
if s satisfies several of the cases? Then it might follow any of the branches. So the behavior of
the output should be the union of the behaviors in all possible branches. In this case, if we have
−1 < s < 0, then s satisfies both cases. Here, it is clear that the right notion of the output point is
the subspace {true, false} : P+

♦ (B). The key property that makes this the “correct” answer is that,
in terms of specialization order,

{true, false} = max ({true}, {false}) .

We note that the key fact is that it is possible to take directed suprema of points (as well as
continuous maps), so we can specify the output result by saying its behavior is the union (i.e.,
supremum) of all possible behaviors, and we can create an implementation for this specification by
ensuring that this supremum is the directed supremum of the behaviors of the each possible branch.
We can ensure this by providing, for each pair of branches fi : Ai ↪→ B and fj : Aj ↪→ B, an open
embedding fij : Ai ×B Aj ↪→ B from the pullback of fi and fj such that

fij = max(fi ◦ ei, fj ◦ ej),

where ei : Ai×BAj ↪→ Ai and ej : Ai×BAj ↪→ Aj are the expected pullback maps. In the case where
the open embeddings are simply open subspaces, fi : {B | Ui} ↪→ B and fj : {B | Uj} ↪→ B, then the
requirement reduces to producing a map fij : {B | Ui∧Uj} ↪→ B such that fij = max(fi, fj) in terms
of specialization order (considering all these functions on their common domain {B | Ui∧Uj}). While
this may seem like a special case, it’s just as general: the difference is just up to the homeomorphism
between a general space and the open subspace which is the image of the open embedding. That
is, even given fi : Ai ↪→ B and fj : Aj ↪→ B, it suffices to give a map

fij : {B | fi(Ai) ∧ fj(Aj)} ↪→ B,

since
{B | fi(Ai) ∧ fj(Aj)} ∼= Ai ×B Aj .

For the inhabited ♦-powerspace P+
♦ (A) of any space A, this maximum always exists: it’s just

the familiar join operation, which takes two non-deterministic operations and executes either one
non-deterministically. Its general specification is

· ∨ · : P+
♦ (A)× P+

♦ (A)→ P+
♦ (A)

x ∨ y |= ♦P , x |= ♦P ∨ y |= ♦P,

and this definition makes it clear why this produces the maximum in terms of specialization order.

0.3 General specification of overlapping patterns

So in general, a general pattern match on a term x : A to produce a value in B, might look like

cases(x)
{

[i : I] fi(xi) =⇒ ei(xi) ,
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where i ranges over the index set I, and fi : Ai ↪→ B is an open embedding, and ei : Ai → B is
a general expression, and xi : Ai is a pattern. The cases expression above entirely determines the
specification of the program, assuming it is valid, but we still need to prove two conditions to show
that it is valid, which are also then used in the implementation of the program. That means that
these proofs will affect the computational behavior of the program, meaning that different proofs
might result in different responses to open covers when points are evaluated. The two conditions
are

Covering

> `B
∨
i:I

fi(Ai)

Gluing For each i, j : I, there is a map

fij : Ai ×B Aj → B

such that
fij = max(fi ◦ ei, fj ◦ ej),

where ei : Ai ×B Aj ↪→ Ai and ej : Ai ×B Aj ↪→ Aj are the expected pullback maps.

Sometimes, we can automatically/generically discharge either of these two goals. For instance,
if the output space B is such that any two (generalized) points have a maximum in terms of
specialization order, then the gluing condition is automatically fulfilled. For instance, this holds for
any lower powerspace P♦(A), including the supported subspaces P+

♦ (A).

0.4 Catch-all cases

If the output space B has a bottom point ⊥B : B, then in some sense we can leave out the covering
condition as well. We note that for any cases expression

cases(x)
{

[i : I] fi(xi) =⇒ ei(xi)

which is already valid where the output space B has a bottom point, we can add a catch-all case

cases(x)

{
[i : I] fi(xi) =⇒ ei(xi)

=⇒ ⊥B

which has the same meaning (where the wildcard indicates the subspace > of the input space A
which is in fact the entire space). The catch-all case already suffices to cover the whole space, of
course.

Since adding the catch-all case doesn’t change the meaning, it makes sense to keep track of
which spaces B have bottom points, and when a cases expression is written whose output space B
has a bottom point, the catch-all case can be automatically added.

For any space A there is a construction to produce the “lifted” space A⊥ which adds in a bottom
point, and in fact, I’m pretty sure that any space B which has a bottom point satisfies B ∼= B⊥,
which means that every space with a bottom point looks like X⊥ for some X. For each lifted space
A⊥, there is importantly the open embedding strict : A ↪→ A⊥.
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We can map a function over lifted spaces with the overlapping pattern

map⊥(f : A→ B)(x : A⊥) : B⊥ , cases(x)
{
strict(z) =⇒ strict(f(z)),

which I think of as Haskell-ish, as it forces its argument to compute the result, but if the input is
⊥, then so is the result.

We have that the Sierṕınski space Σ (the space of “truth values”) is homeomorphic to ∗⊥ (where
∗ is the unit type), and in fact, it is convenient to take this as the definition of the Sierṕınski space,
where we have

true : Σ , strict(tt)

false : Σ , ⊥.

Furthermore, we also notice that the Sierṕınski space automatically satisfies the gluing condition,
as we also have Σ ∼= P♦(∗) (where false : Σ maps to {} : P♦(∗) and true : Σ maps to {tt} : P♦(∗)).
Therefore, whenever writing any overlapping pattern match which outputs to Σ, no additional
proofs are necessary! Simply writing the specification with the overlapping pattern is sufficient.

This yields some cute ways of writing the logical “and” and “or” operations for Σ:

∧ : Σ× Σ→ Σ

∧(p) , cases(p)
{
strict, strict =⇒ true

∨ : Σ× Σ→ Σ

∨(p) , cases(p)

{
strict, =⇒ true

, strict =⇒ true

The first definition perhaps looks similar to the Haskell definition

and :: () -> () -> ()

and () () = ()

which looks trivial, but has an important computational interpretation of forcing both of its argu-
ments whenever the return value is forced. However, the definition of ∨, which performs the “or”
operation, has no analog in Haskell. The “similar” Haskell definition

or :: () -> () -> ()

or () _ = ()

or _ () = ()

will in fact behave computationally as if the second pattern were missing (i.e., it forces the first
argument but not the second). This operation is often known as the “parallel-OR” operation, which
Mart́ın Escardó discusses in [Esc04]. It has this name because of the interpretation of the space
Σ representing semi-decision procedures: if we have two semi-decision procedures, we can create a
procedure which halts if and only if either of the component procedures halts by interleaving them
in a parallel fashion. Such a general notion of interleaving is unavailable in most programming
languages, as far as I’m aware.
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Note that, viewing Σ as ∗⊥, the “and” operation readily generalizes to

pair⊥ : A⊥ ×B⊥ → (A×B)⊥

pair⊥(p) , cases(p)
{
strict(x), strict(y) =⇒ strict(x, y)

but it isn’t possible to generalize “or” to something that would look like either⊥ : A⊥ ×A⊥ → A⊥.
The fact that the “or” operation works for the Sierṕınski space is because ∗ has only one element,
so one cannot tell if they observed the result due to either the left argument or the right argument,
while for general A, this may not be the case. This is why the Haskell or definition is problematic.
If we instead view Σ as P♦(∗), then the “and” operation generalizes to intersection, whereas the
“or” operation generalizes to union. It doesn’t seem that writing intersection and union on P♦(A)
can be phrased as overlapping pattern matches, however (unless A is discrete).
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