
Introduction. Much modern software manipulates concepts of a continuous nature, such as
space, time, magnitude, and probability. Its broad purview is expanding to safety-critical do-
mains such autonomous vehicles, which use software for planning and control. Construction
of formal proofs has succeeded in ensuring the safety and correctness of traditional software,
but there is additional difficulty in verifying most software which manipulates continuous
concepts, because computations do not soundly implement the mathematical operations
they represent. For instance, floating point operations are different from their analogs for
real numbers. This mismatch has caused some catastrophic errors, such as the Patriot mis-
sile failure in 1991, due to rounding error, and the Ariana 5 rocket failure in 1996, due to
numerical overflow.

Even when the mismatch between the code and the math doesn’t seem to manifest in software
testing, it makes it very difficult to formally guarantee the code’s correctness or safety.
Furthermore, for cyber-physical systems, safety or correctness properties often ought involve
probabilistic uncertainty; for instance, due to sensor uncertainty, one might want to prove a
system is safe with high probability, rather than absolutely. Foundational proofs of this sort
face additional difficulties, both theoretical and practical; to date, no Coq library deals with
probability over continuous spaces.1

The remedy I propose is to program with the continuous objects themselves! I have been
working for the past 9 months to build a programming system call topolog, embedded
within Coq, for continuous spaces2. Its most abstract interface is a programming language
where types are topological spaces, values are points of a space, and functions are continuous
maps. Since it eliminates the mismatch between the code and the math, formal reasoning
about these programs is feasible. Since types are spaces, there is a “probability monad,”
which maps any space to the space of its probability distributions, making it possible to
construct programs involving probability as well as to reason about them. The analogous
construction is impossible in Coq, where types are not (necessarily) spaces.

The ability to run topolog programs is based on formal topology, a constructive theory of
topology.3 Although the development of formal topology was driven by goals of predicative
constructivism, topolog is the first to realize its constructive content to produce computer
programs for running continuous maps. The key idea is that a space is defined by a logical
theory describing its observable properties (“open sets”) and the relationships between them.
Then there is a datatype of covers, which are (possibly infinite) collections of observable
properties together with proofs that anywhere in the space, at least one of those properties
holds. A point then consists of a computational procedure which takes covers an inputs and
returns some observable property which holds of that particular point. For instance, for any
tolerance ε : Q+, the real numbers R are covered by balls of radius ε with rational centers.
Accordingly, a point in R can be approximated by a rational number to within ε.

1Philippe Audebaud and Christine Paulin-Mohring. “Proofs of randomized algorithms in Coq”. In: Science
of Computer Programming 74.8 (2009), pp. 568–589.

2The project is open-source and available at http://github.com/bmsherman/topology.
3Thierry Coquand et al. “Inductively generated formal topologies”. In: Annals of Pure and Applied Logic
124.1 (2003), pp. 71–106.

1



Programming with continuous spaces is decidedly different from conventional programming;
I have been exploring the principles of this new kind of programming.

For instance, consider an autonomous car which is approaching a yellow light and must
decide whether or not to brake in order to stop at the intersection. For simplicity, suppose
that it’s safe to brake as long as the car is more than 10 meters from the light and safe
to pass through the intersection as long as it’s fewer than 20 meters away. Intuitively, we
might want to write a function brake? : R → bool which changes its decision somewhere
between 10 and 20 meters away. But this is impossible, as comparing two real numbers
is uncomputable. Because R is connected (a topological property), any program with the
type R → bool must ignore its input. Leslie Lamport coined this Buridan’s prinicple:4 “A
discrete decision based upon an input having a continuous range of values cannot be made
within a bounded length of time.”

A solution is to allow the decision to be non-deterministic. In topolog, one may write the
program

brake?(x : R) : P+(bool) , cases(x)

{
· > 10 =⇒ {true}
· < 20 =⇒ {false},

which features an overlapping pattern match, a language construct that I developed which is
especially useful for continuous spaces. Note that, while the cases cover R, each individual
case is not even decidable (due to Buridan’s principle). An input which satisfies multiple
cases is allowed to follow any branch, so its result is a non-deterministic “merge” of those
branches (if they don’t already agree on their overlap); proof is required to ensure this merge
exists (which is always the case for P+(bool), the space of non-empty subsets of bool).

Project proposal. I plan to continue implementing topolog. Once feasible, I’d like to
use it program software which controls an autonomous vehicle, prove safety properties about
that software, and run it on a real autonomous vehicle. Along the way, I anticipate further
elaborating the computational content of formal topology and discovering more principles
about how to program with continuous spaces.

Broader impacts. Safety of cyber-physical systems is paramount. Programming in
topolog eliminates entire classes of bugs, such as overflow and rounding error, and its
proof theory allows users to formally state and prove safety and correctness properties that
may even involve probability. This will allow increased confidence in the safety of software
in some of the most safety-critical applications.

Intellectual merit. My project bridges the fields of constructive topology and formal
verification. For work in constructive topology, it is uniquely applied, extracting its com-
putational content, and developing new constructions whose value is more practical than
mathematical. For work in formal verification, the idea to have software actually executing
continuous functions (rather than unsoundly modeling some operations as continuous) is
largely unprecedented. It is fun to explore this unusual intersection of fields, and in my
opinion worthwhile as well.

4Leslie Lamport. “Buridan’s principle”. In: Foundations of Physics 42.8 (2012), pp. 1056–1066.

2


