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Abstract
Though many safety-critical software systems use floating point

to represent real-world input and output, the mathematical specifi-

cations of these systems’ behaviors use real numbers. Significant

deviations from those specifications can cause errors and jeopardize

safety. To ensure system safety, some programming systems offer

exact real arithmetic, which often enables a program’s computation

to match its mathematical specification exactly. However, exact

real arithmetic complicates decision-making: in these systems, it is

impossible to compute (total and deterministic) discrete decisions

based on connected spaces such as R. We present programming-

language semantics based on constructive topology with variants

allowing nondeterminism and/or partiality. Either nondetermin-

ism or partiality suffices to allow computable decision making on

connected spaces such as R. We then introduce pattern matching

on spaces, a language construct for creating programs on spaces,

generalizing pattern matching in functional programming, where

patterns need not represent decidable predicates and also may over-

lap or be inexhaustive, giving rise to nondeterminism or partiality,

respectively. Nondeterminism and/or partiality also yield formal

logics for constructing approximate decision procedures. We extended

the Marshall language for exact real arithmetic with these con-

structs and implemented some programs with it.

CCSConcepts •Theory of computation→Constructivemath-
ematics; Program semantics; • Mathematics of computing →

Continuous functions; Point-set topology;
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1 Introduction
Ensuring the safety of software that mixes discrete and continuous

computation—such as cyber-physical systems, numerical computa-

tions, and machine learning—can be challenging. When continuous

values are represented unsoundly, such as with finite precision,

failure can result from numerical error alone. Verification necessi-

tates both guaranteeing accuracy of computations with continuous

values and idealized reasoning about a system’s behavior.
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Programming systems that implement exact real arithmetic [Bauer

2008; O’Connor 2008; Taylor 2010] do guarantee accuracy and

have been used to develop verified cyber-physical systems [Anand

and Knepper 2015]. While these programming systems ease de-

velopment of traditionally continuous computations on the reals,

there has been little investigation of how to soundly incorporate

decision-making: computations from the reals (R) to the Booleans

(B). Classic results prove that it is impossible to compute (total and

deterministic) discrete decisions based on connected spaces such

as R [Weihrauch 1995].

However, we show that by allowing partiality or nondetermin-

ism into the computational model, we can enable decision-making

while retaining fairly strong computational abilities. We present

programming-language semantics based on constructive topology

with variants allowing nondeterminism and/or partiality.

Constructive topology, in the form of locale theory, provides

a single programming language in which it is possible to build

and execute programs that compute with continuous values and

to reason about these programs in terms of their mathematical

descriptions. In this programming language (category) FSpc, types
(objects) are spaces and programs (morphisms) are continuous maps.

Types are spaces. Spaces are defined as theories of geometric logic

[Vickers 2007a]: propositional symbols describe the core observable

properties of the space, and axioms describe which properties imply

others. Points of a space are models of its theory.

For example, the theory forR has as its propositional symbols the

open balls with rational centers, q − ε < · < q + ε (for each q : Q, ε :
Q+), and an example axiom is the one⊤ ≤

∨
q:Q (q − ε < · < q + ε)

that says (for any ε : Q+) that without assumptions (⊤), a point

must be within ε of some rational q. Axioms with disjunctions on

the right, like this one, are called open covers. They can be read

computationally. For instance, since the point π lies in ⊤ (as every

point does), it must lie in some ball of radius 1 with a rational center,

and indeed it should be able to compute any such rational: 3 would

be one possible choice, since 3 − 1 < π < 3 + 1.

Programs are continuous maps. One defines a continuous map

f : A →c B by programming how it reduces open covers of B to

open covers of A. Accordingly, computation is pull-based, where

a composition of functions successively reduces open covers of

the output to open covers of the input, at which point the input

computes which open of the cover it lies in, which corresponds to

a particular open that the output lies in. Constructive topology has

surprisingly strong computational abilities [Escardó 2007; Simpson

1998; Taylor 2010], such as the ability to compute the maximum

that a real-valued function attains over a compact-overt space (see

Definition 5.4).

1.1 Contributions
Making nontrivial total and deterministic decisions based on con-

nected spaces is impossible: any continuous map f : C →c D from

https://doi.org/10.1145/3209108.3209193
https://doi.org/10.1145/3209108.3209193
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a connected space C to a discrete space D must be constant. We

demonstrate that decisions can be made, however, by permitting ei-

ther partiality or nondeterminism, and we continue to then present

the following contributions:

Partial and/or nondeterministicmaps. §3 defines partiality and
nondeterminism as they relate to continuous maps and §4.2 char-

acterizes the open maps and open embeddings as those continuous

maps having partial and/or nondeterministic inverses. While each

of these subjects has been studied individually in the context of

constructive topology, we contribute the first integrated characteri-

zation relating them.

Pattern matching on spaces. §4 generalizes pattern matching

on inductive types in functional programming to spaces. It differs

in that patterns need not correspond to decidable predicates, and

patterns are allowed to overlap or fail to be injective, yielding

nondeterminism, or be inexhaustive, yielding partiality.

Formal logics for approximate decision procedures. §5 gener-
alizes the decidable predicates of functional programming to ap-

proximately decidable predicates on spaces, which may either be

partial or nondeterministic. Because spaces often have few decid-

able predicates, this relaxation is essential for decision-making on

spaces. The Boolean algebra of decidable predicates generalizes to

a quasi-Boolean algebra, and quantification over finite sets is gen-

eralized to quantification over compact-overt spaces (see Definition

5.4). The partial logic and the nondeterministic logic are observed

to be duals of each other.

Case study. We have extended the Marshall language [Bauer 2008]

for exact real arithmetic with versions of these constructs (§6) and

in §7 present two example programs that make critical use of those

constructs to solve decision-making tasks.

Our results show how constructive topology can serve as the

foundation for programming systems that support mixing discrete

and continuous computation. The hope is that such programming

systems can dramatically simplify the development and verification

of applications—such as cyber-physical systems, numerical compu-

tations, and machine learning—that must make decisions based on

continuous values.

A longer version of this paper [Sherman et al. 2018] provides

further technical detail and proofs.

2 Constructive topology
This section reviews locale theory, a constructive theory of topol-

ogy that provides a semantic and computational foundation for

programming with spaces. Readers interested in a more thorough

introduction may wish to consult Vickers’s Topology via Logic 1989.

Preliminaries. We intend mathematical statements to be inter-

preted within a constructive metatheory with a universe of impred-

icative propositions Ω, potentially formalizable within, for instance,

the Calculus of Constructions
1
. We use the term “type” to refer to

a type and the term “set” to refer to what is often called a setoid

1
It is possible to formulate a predicative analogue of locale theory known as formal

topology, which makes more clear the computational content of constructive topol-

ogy. This does impose some difficulties that require some changes. For instance, the

construction of product spaces is generally impredicative, but it is possible to instead

use inductively generated formal spaces [Coquand et al. 2003], which has products

even in a predicative setting. All spaces used in this paper are inductively generated

[Coquand et al. 2003; Vickers 2004, 2005, 2007b, 2009]. Palmgren 2003 offers a more

careful treatment of predicativity and universes in formal topology.

or a Bishop set [Bishop 1967]: a type together with a distinguished

equivalence relation on it, which we denote by =. If A and B are

both sets, then the notation f : A → B means that f is a morphism

of sets (i.e., it maps equivalent elements ofA to equivalent elements

of B). For objects A,B of a category, let the notation A � B indicate

that they are isomorphic.

Definition 2.1. A space
2 A is a distributive lattice O (A) that has

top and bottom elements, ⊤ and ⊥, respectively, and that has all

joins such that binary meets distribute over all joins:

U ∧
∨
i :I

Vi =
∨
i :I

U ∧Vi .

We call the lattice O (A) the opens of A. This lattice describes
the observable or “affirmable” properties of A [Vickers 1989]. If

U ≤
∨
i :I Vi , we call the family (Vi )i :I an open cover ofU .

Definition 2.2. A point x of a spaceA is a subset (x |= ·) : O (A) →
Ω (read “x lies in”) such that

x |= U U ≤
∨
i :I

Vi

∃i : I . x |= Vi
join

x |= ⊤
meet-0

x |= U x |= V

x |= U ∧V
meet-2

.

The formal proof that a point satisfies the above three rules both

justifies the consistency of its definition and provides its computa-

tional content. Intuitively, x |= U means we have some knowledge

U about x . join says that it is possible to refine existing knowledge

about x to get an even sharper estimate of where x lies. When a

point x that lies inU is presented with an open coverU ≤
∨
i :I Vi ,

it uses the proof of the covering relationship to compute some open

Vi that x also lies in. The index i is a concrete answer that indicates
where the point lies. meet-0 says that we know something about

x (which we can then refine with join), and meet-2 says that we

can assimilate two pieces of knowledge about x into one, which

assures that they are mutually consistent.

Definition 2.3. A continuous map f : A →c B between spaces

is a map f ∗ : O (B) → O (A), called an inverse image map, that

preserves all joins, ⊤, and binary meets, i.e., it satisfies

U ≤
∨
i :I

Vi

f ∗(U ) ≤
∨
i :I

f ∗(Vi )
join

⊤ ≤ f ∗(⊤)
meet-0

f ∗(U ) ∧ f ∗(V ) ≤ f ∗(U ∧V )
meet-2

.

A continuous map f : A →c B transforms covers on B into

covers onA. Spaces and continuous maps form a cartesian monoidal

category we call FSpc (for formal spaces)
3
. The terminal object is

the one-point space ∗, whose lattice of opens O (∗) is Ω, where
U ≤ V if U implies V . Points of a space A can be identified with

continuous maps ∗ →c A, and in particular the join and meet

rules for continuous maps reduce to the corresponding rules for

2
Since all topological notions in this article are pointfree, we coopt terminology from

classical topology without fear of confusion. For instance, we say “space” rather than

“locale” when describing the pointfree analogue of spaces.

3 FSpc is often called Loc, for locales.
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points. Two continuousmaps are equal if they have the same inverse

imagemaps. One can think of the inverse imagemap as a behavioral

specification and the formal proof that the continuousmap preserves

meets and finitary joins as an implementation of that specification.

Given a space A and an open U : O (A), we can form the open

subspace {A | U } of A by making O ({A | U }) a quotient of O (A),
identifying opens P ,Q : O (A) in {A | U } when P ∧U = Q ∧U .

3 Decision making with partiality and
nondeterminism

The real line R is connected, meaning that any continuous map

f : R→c D to a discrete set D must be a constant map. In particu-

lar, every map f : R→c B is constant. The practical implications

of connectedness are severe: it is impossible to (continuously) make

(nontrivial) discrete decisions over variables that come from con-

nected spaces such as R.

Proposition 3.1. Continuous maps f : A →c B are in bijective

correspondence with pairs of opens (P ,Q) of A that are covering, i.e.,

⊤ ≤ P ∨Q , and disjoint, i.e., P ∧Q ≤ ⊥.

Proof sketch. Since f ∗ preserves joins, it is specified entirely by its

behavior on the two basic opens, P ≜ f ∗(· = true) and Q ≜ f ∗(· =
false). Since f ∗ preserves ⊤ (meet-0), P and Q are covering, and

since f ∗ preserves binary meets (meet-2), P andQ are disjoint. □

While it is impossible to make discrete decisions on connected

spaces A that are total and deterministic, we can make decisions

that are either partial (only defined on some open subspace of the

input space) or nondeterministic (could potentially give different

answers even when given the exact same input). Partiality relaxes

the requirement that the inverse image map preserves ⊤ (meet-0),

while nondeterminism relaxes the requirement that the inverse

image map preserves binary meets (meet-2). Accordingly, partial

B-valued maps correspond to pairs of opens that are not necessarily

covering, and nondeterministic B-valued maps correspond to pairs

of opens that are not necessarily disjoint.

In this section, we present categories whose objects are spaces

and whose morphisms are like continuous maps, but the inverse

image maps need not necessarily preserve ⊤ or binary meets (see

Fig. 1). The remainder of this section characterizes these partial

and/or nondeterministic maps and the monads that represent them.

3.1 Partiality
The meet-0 rule enforces totality: viewing ⊤ as the predicate rep-

resenting the entire space, meet-0 says that a point must lie in the

entire space. Eliminating meet-0 permits definition of a continuous

map that is only defined on an open subspace of the domain.

Definition 3.2. A partial map f from A to B, written f : A →p B,
is a map f ∗ : O (B) → O (A) that preserves joins and binary meets

but not necessarily ⊤. These maps form a category FSpcp .

Example 3.3. Consider the task of comparing a real number with

0. We can define a partial comparison cmp : R →p B by only

defining a continuous map on the open subspace {R | · , 0} of R.
We specify its observable behavior with its inverse image map

cmp∗(· = true) ≜ · > 0 cmp∗(· = false) ≜ · < 0.

The inverse image map cmp∗ in fact defines a partial map, as

cmp∗ preserves joins and binary meets, but it is not total, since it

fails to preserve ⊤.

Proof. To confirm that cmp∗ preserves binary meets, it suffices to

check binary meets of distinct basic opens, so we confirm

cmp∗((· = true) ∧ (· = false)) = cmp∗(⊥) = ⊥ = (· > 0) ∧ (· < 0)

= cmp∗(· = true) ∧ cmp∗(· = false).

However, cmp∗ does not preserve ⊤, since ⊤ ≰ cmp∗(⊤) = (· <

0) ∨ (· > 0). □

There is a bijective correspondence between partial maps and

continuous maps defined on some open subspace of the domain.

3.2 Nondeterminism
The meet-2 rule enforces determinism. Spatially, the rule says that

if a point lies in two opens, it must lie in their intersection. Compu-

tationally, it says that it should be possible to consistently reconcile

different answers given by different refinements computed by use of

the join rule. Eliminating meet-2 allows the definition of programs

whose observable behavior might depend on the exact implementa-

tion of their inputs (specifically, the formal proofs that their inputs

preserve joins and finitary meets). Rather than viewing such behav-

ior as breaking the abstraction provided by the equivalence relation

on points (since points that lie in the same opens may be treated

differently), we can instead choose to maintain this abstraction and

view such behavior as fundamentally nondeterministic.

Definition 3.4. A nondeterministic map f from A to B, written
f : A →nd B, is a map f ∗ : O (B) → O (A) that preserves joins and
⊤ but not necessarily binary meets. These maps form a category

FSpcnd .

For instance, we can perform a nondeterministic approximate

comparison of a real number with 0:

Example 3.5. Fix some error tolerance parameter ε > 0. We may

define a total but nondeterministic approximate comparison with 0,

cmp : R→nd B, allowing error up to ε , by specifying its observable
behavior with the inverse image map

cmp∗(· = true) ≜ · > −ε cmp∗(· = false) ≜ · < ε .

We can confirm that cmp∗ in fact defines a nondeterministic

map, as it preserves joins and ⊤ but fails to preserve binary meets.

Proof. Since cmp’s codomain is discrete, it trivially satisfies join.

We confirm it preserves ⊤:

cmp∗(⊤) = cmp∗(· = true) ∨ cmp∗(· = false)

= (· > −ε) ∨ (· < ε) = ⊤.

However, it fails to preserve binary meets, since

cmp∗((· = true) ∧ (· = false)) = cmp∗(⊥) = ⊥

but

cmp∗(· = true) ∧ cmp∗(· = false) = (· > −ε) ∧ (· < ε) = −ε < · < ε ,

which is not ⊥. □

3.3 Both partiality and nondeterminism
Definition 3.6. A nondeterministic and partial map f from A to B,
written f : A →nd ,p B, is a map f ∗ : O (B) → O (A) that preserves
joins but not necessarily any meets. These maps form a category

FSpcnd ,p (equivalent to the category of suplattices).
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FSpc

FSpcnd FSpcp

FSpcnd ,p

forget meet-2 forget meet-0

forget meet-0 forget meet-2

Figure 1. The lattice of categories representing potentially nonde-

terministic (nd) or partial (p) maps on spaces.

3.4 Monads and summary
Potentially allowing partiality and nondeterminism yields a lattice

of categories that represent nondeterministic and partial maps, de-

picted in Fig. 1, where each arrow denotes a faithful (“forgetful”)

functor where a particular rule is no longer required for inverse

image maps. These forgetful functors have right adjoints, such that

they induce a family of (strong) monads on FSpc: ·⊥ for represent-

ing partiality, P+♢ for nondeterminism, and P♢ for both
4
. Their

adjunctions give the correspondences

A →nd ,p B � A →c P♢(B)

A →nd B � A →c P+♢(B)

A →p B � A →c B⊥.

Accordingly, it is possible to use these monads to have access to

partiality and/or nondeterminism within the language of continu-

ous maps.

4 Pattern matching
Often, programmers would like to compose a decision on R with

other computations that depend on the decision and thus associate

each condition with a corresponding computation. This program-

ming pattern resembles pattern matching in traditional functional

programming, and therefore, in this section, we identify and present

general pattern matching for spaces. Our constructions admit par-

tial and/or nondeterministic pattern matches, where in the former

case the collection of patterns may not be exhaustive, and in the

latter they may overlap. While the syntax of a pattern match deter-

mines a unique map that is potentially partial and nondeterministic,

there are simple conditions that ensure that a map is total or deter-

ministic:

1. Totality: together, the cases cover the entire input space.

2. Determinism: patterns are disjoint and injective.

4.1 Pattern families
This section characterizes those families of patterns that may be

used to match on a scrutinee that comes from a space A (if nothing

is to be assumed about the branches). The idea is that we compose

a function f : A →C B by factoring through a disjoint sum over a

collection of spaces representing the possible patterns and branches,∑
i :I Ui , i.e., a composition

A
∑
i :I Ui B

inv e

of a “pattern matching” part inv followed by the “branch execution”

part e . The collection of branches (ei : Ui →C B)i :I exactly corre-

spond to the branch-execution function e , but the pattern-matching

4
Each of these strong monads preserves inductive generation of spaces [Vickers 1989,

2004].

part inv is more interesting; this section will address those families

of patterns that may yield valid functions of this sort.

Semantically, we think of a single pattern as representing a space

U together with a map p : U →c A that represents the possibility

that the scrutinee can be represented as a point in the image of

p. For a single pattern p : U →c A to be implementable, it must

have a well-behaved inverse p−1 : A →nd ,p U that is partial and

also may be nondeterministic. If we are building a program that is

total, then we do not need each p−1 to be total, but we do need the

collection of them to cover A. If we are building a program that is

deterministic, then p−1 should be deterministic. We will find that

open maps are exactly those with well-behaved (nondeterministic

and partial) inverses, and open embeddings are open maps whose

inverses are deterministic.

4.2 Open maps and open embeddings
In pattern matching for functional programming, one may pattern

match on an inductive type by checking whether it has the form

of a particular constructor applied to some argument (i.e., it is in

the image of the map defined by a particular constructor). The

analogues of constructors for pattern matching on spaces are the

open maps and the open embeddings.

4.2.1 Open maps
Definition 4.1 (Johnstone 2002). A continuous map f : A →c B is

an open map (which we may denote by f : A →o B) if the inverse
image map f ∗ : O (B) → O (A) has a left adjoint f! : O (A) →

O (B), called the direct image map, that satisfies the Frobenius law,

f!(U ∧ f ∗(V )) = f!(U ) ∧V .

That is, f is an open map if the image of any open in A is open

in B; the direct image map provides this mapping.

Proposition 4.2. For any open map p : A →c B, there is a (poten-
tially) partial and nondeterministic inverse map p−1 : B →nd ,p A
whose inverse image map is p!.

Proof. We only must prove that p! preserves joins: it does, since p!
is a left adjoint (to p∗). □

An example of an open map is the “return” function of the non-

determinism monad {·} : A →c P+♢(A).

4.2.2 Open embeddings
Given an open U of a space A, let ι[U ] : {A | U } →c A denote the

inclusion of the open subspace {A | U } into A.

Lemma 4.3. An open map f : A →c B factors through its direct im-

age f!(⊤), i.e., there is an ˜f such that the following diagram commutes:

A {B | f!(⊤)}

B

˜f

f
ι[f!(⊤)]

Definition 4.4. A map f : A →c B is an open embedding (or open

inclusion), denoted f : A ↪→ B, if A is isomorphic to its image

under f in B, i.e., if there is an open U : O (B) and isomorphism

˜f : A →c {B | U } such that the following diagram commutes:

A {B | U }

B

˜f

˜f −1

f
ι[U ]
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Theorem 4.5. Amap f :A→c B is an open embedding if and only if

it is an open map and its direct image map f! preserves binary meets.

Proof sketch. Given an open embedding f : A →c B that factors

through {B | U }, letting ˜f and
˜f −1 be the maps as in the above

diagram, its direct image map is given by

f! : O (A) → O (B)

f!(V ) ≜ ˜f −1∗(V ) ∧U .

Conversely, given an open map f : A →c B with a meet-

preserving direct image map f!, we claim that A � {B | f!(⊤)}. □

Proposition 4.6. Given an open embedding f : A ↪→ B, the “in-
verse” map f −1 : B →nd ,p A that any open map has is in fact

deterministic, i.e., f −1 : B →p A.

Proof. Follows directly from the fact that f! preserves joins and
binary meets. □

An example of an open embedding is the “return“ function of

the partiality monad up : A →c A⊥. This allows us to view A as an

open subspace of A⊥.

4.3 Pattern families: definition and properties
In general, we have an entire family of patterns (pi : Ui →o A)i :I
where I is some index type. We can use this pattern family to

construct the partial and nondeterministic inverse

inv : A →nd ,p

∑
i :I

Ui

inv(x) ≜
⊔
i :I

inji (p
−1
i (x)),

where ⊔ denotes the nondeterministic join, ⊔ :

∏
i :I X →nd ,p X

for any space X .

Therefore, for any index type I , any collection of open maps pi :
Ui →o A is a collection of patterns for defining a nondeterministic

and partial map using a pattern match. Given an arbitrary collection

of branches ei : Ui →nd ,p B, or equivalently, e :
∑
i :I Ui →nd ,p B,

the pattern match is just the composition e ◦ inv : A →nd ,p B.
As expected, the pattern match is a nondeterministic union of its

branches.

For those categories/languages that require totality or determin-

ism, we would like to characterize the families of patterns that are

suitable in those cases. These will be subcollections of the collection

of pattern families in the nondeterministic and partial case.

Definition 4.7. A pattern family for a subcategory C of FSpcnd ,p
is a family of open maps (pi : Ui →o A)i :I such that

⊔
i :I inji ◦p

−1
i :

A →nd ,p
∑
i :I Ui is in C. Let JC denote the collection of pattern

families for C.

Theorem 4.8. We can characterize the pattern families for the fol-

lowing subcategories of FSpcnd ,p as exactly those families of open

maps (pi : Ui →o A)i :I satisfying certain additional properties:

FSpcnd (Totality) The patterns cover the whole input space, i.e.,

⊤ ≤
∨
i :I pi !(⊤).

FSpcp (Determinism) Each pi : Ui →o A is an open embedding,

and the patterns are pairwise disjoint, meaning that whenever

pi !(⊤) ∧ pj
!
(⊤) is positive5 in A, then (intensionally) i = j.

5
An open U is called positive if whenever U ≤

∨
i :I Vi , I is inhabited, i.e., every

open cover ofU itself must have at least one open.

FSpc (Totality and determinism) The above conditions for to-

tality and determinism must both hold.

For any subcategory C of FSpcnd ,p , one can construct a pattern

match by composing a pattern family (pi : Ui →o A)i :I for C with

a collection of branches e :
∑
i :I Ui →C B that is in C.

When determinism is required, we recover the familiar condition

required of pattern matching in functional programming: disjoint-

ness of patterns (i.e., patterns are not allowed to overlap). When

both determinism and totality are required, we further recover the

familiar condition that pattern membership is decidable:

Proposition 4.9. For a pattern family (pi : Ui ↪→ A)i :I for FSpc, if
the index type I has decidable equality, then for each i : I , there is
a map χpi !(⊤) : Ui →c B satisfying χ∗pi !(⊤)

(· = true) = pi !(⊤) (i.e.,

pi !(⊤) is clopen).

Wewill now observe that the pattern families for the various sub-

categories of FSpcnd ,p form a lattice of Grothendieck pretopologies.

This tells us that there are certain techniques that we can always

use to form pattern families, and that pattern families will have

important structural properties. For instance, the transitivity ax-

iom corresponds to the ability to flatten nested pattern matches

into a single one. The stability axiom allows us to use “pulled-back

covers”: it is possible to pattern match on an input x : A by doing a

case analysis on f (x) : B, such that in each branch it is known that

x lies in a particular open subspace of A (rather than only knowing

that f (x) lies in a particular open subspace of B). The root-finding
example in §7.2 uses a pulled-back cover in this way.

Definition 4.10 (Mac Lane and Moerdijk 1992). A Grothendieck

pretopology is an assignment to each spaceA a collection of families

(Ui →c A)i :I of continuous maps, called covering families, such that

1. isomorphisms cover – every family consisting of a single

isomorphismU
�
→c A is a covering family;

2. stability axiom – the collection of covering families is stable

under pullback: if (Ui →c A)i :I is a covering family and

f : V →c A is any continuous map, then the family of

pullbacks (f ∗Ui →c V )i :I is a covering family;

3. transitivity axiom – if (Ui →c A)i :I is a covering family and

for each i also (Ui , j →c Ui )j :Ji is a covering family, then

also the family of composites (Ui , j →c Ui →c A)i :I , j :Ji is a
covering family.

Proposition 4.11 (Product axiom). In any Grothendieck pretopol-

ogy, given covering families (pi : Ui →c A)i :I and (qj : Vj →c B)j :J ,
there is a product covering family (pi ⊗qj : Ui ×Vj →c A×B)(i , j):I×J .

Theorem 4.12. For each C ∈ {FSpc, FSpcnd , FSpcp , FSpcnd ,p },
the collection of pattern families for C, JC , forms a Grothendieck

pretopology.

4.4 Syntax of pattern matching
We now describe syntax for a programming language with pattern

matching as guided by the above semantics (see Fig. 2).

Each of C ∈ {FSpc, FSpcnd , FSpcp , FSpcnd ,p } are cartesian

monoidal categories, meaning that they admit a restricted (first-

order) λ-calculus syntax [Escardó 2004], with the typing rules

(x : A) ∈ Γ

Γ ⊢C x : A
var

f : A1 × · · · ×An →C B
Γ ⊢C e1 : A1 · · · Γ ⊢C en : An

Γ ⊢C f (e1, . . . , en ) : B
app

,
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expression e ::= x | f (e , . . . , e) | case(e)


p ⇒ e
.
.
.

p ⇒ e

pattern p ::= f | x | _ | f (p) | p , p

function f

variable x

Figure 2. Syntax for our simple language with pattern matching.

where contexts are lists of spaces and in the var rule (x : A) ∈

Γ denotes a witness that A is a member of the list Γ. Let Prod :

list(FSpc) → FSpc denote the product of a list of types. We use an

unadorned turnstile ⊢ for continuous maps, C = FSpc.

Proposition 4.13. Given any expression Γ ⊢C e : A, we can con-

struct a term ⟦e⟧ : Prod(Γ) →C A.

In Fig. 3 we define typing rules for patterns, where p : A ⊣ Γ
intuitively means that the pattern p provides a context of pattern

matching variables Γ by patternmatching on a spaceA. For instance,
we could have the pattern

(up(x),y) : A⊥ × B ⊣ x : A,y : B

on a space A⊥ ×B that provides variables x : A and y : B to be used

in the branch corresponding to that pattern.

Theorem 4.14. Given any pattern derivation p : A ⊣ Γ, there is
a map ⟦p⟧ : Prod(Γ) × ∆ →o A for some space ∆ that collects the

“discarded variables” from the wildcards
6
.

Proof sketch. Follows from the fact that open maps include the iden-

tity (var, wildcard) and are closed under composition (compose)

and parallel composition (product). □

Note that the same pattern syntax would work with open em-

beddings instead of open maps, as they too form a category and are

closed under parallel composition; patterns of open embeddings

are necessary for constructing deterministic programs.

We can now define a general (mostly) syntactic rule for inter-

preting the pattern matches described in this section.

Theorem 4.15. We can interpret the syntax
7

Γ ⊢C s : A
∏
i :I

pi : A ⊣o Ai∏
i :I

Γ,Ai ⊢C ei : B (⟦pi⟧)i :I ∈ JC

Γ ⊢C

(
case(s)

{
[i : I ] pi ⇒ ei

)
: B

case-C

(with the one non-syntactic side condition (⟦pi⟧)i :I ∈ JC), where

C ∈ {FSpc, FSpcnd , FSpcp , FSpcnd ,p }.

Proof. The syntactic constructions give us maps ⟦s⟧ : Γ →C A,
⟦pi⟧ : Ai × ∆i →o A (for some spaces ∆i representing discarded

variables in the pattern pi ), and ⟦ei⟧ : Γ ×Ai →C B. The condition
(⟦pi⟧)i :I ∈ JC means that these maps appropriately cover A, so
that we get an appropriately behaved map inv : A →C

∑
i :I Ai ×∆i .

6
Discarding variables is unnecessary if we only consider overt spaces A; a space A is

overt if the map A →c ∗ is an open map. Classically, all spaces are overt.

7
As mnemonics, I stands for index type, s stands for scrutinee of a case expression, p

stands for pattern, and e for expression.

f : ∗ →o A

f : A ⊣ ·
constant

v : A ⊣ v : A
var

_ : A ⊣ ·
wildcard

p : U ⊣ Γ f : U →o A

f (p) : A ⊣ Γ
compose

p : A ⊣ Γ q : B ⊣ ∆

p,q : A × B ⊣ Γ,∆
product

Figure 3. Typing rules for patterns.

We must produce a map f : Γ →C B. We can do so by defining
8

f : Γ →C B

f (γ ) ≜ let ⟨i , x⟩ ≜ inv(⟦s⟧(γ )) in ⟦ei⟧(γ , fst(x)). □

Note that the condition (⟦pi⟧)i :I ∈ JC that the patterns lie in

the appropriate Grothendieck pretopology is trivial when C =

FSpcnd ,p , making the rule purely syntactic. For C , FSpcnd ,p ,
it would be interesting to study when the non-syntactic covering

and/or disjointness requirements can be decided automatically.

5 Formal logics for approximate decision
procedures

In this section, we develop a formal logic for constructing decision

procedures on spaces that may be either partial or nondeterministic,

by simply considering partial and/or nondeterministic Boolean

values. This is useful where there are not total and deterministic

decision procedures: for instance, there are no nontrivial maps

R →c B (since R is connected) but plenty of nondeterministic

maps R→nd B or partial maps R→p B.
Conventional decision procedures in general functional program-

ming correspond to decidable predicates, or functions returning

Boolean values. Decidable predicates are closed under conjunction,

disjunction, and negation since those operations are computable on

B, and additionally they are closed under universal and existential

quantification over finite
9
sets.

Analogously, B-valued continuous maps are also closed under

conjunction, disjunction, and negation, and they admit quantifica-

tion over compact-overt spaces (which generalize finite sets). We

will show that these operations still work when partiality or non-

determinism is admitted, where Boolean logic is generalized to

many-valued logic with the structure of a quasi-Boolean algebra.

Proposition 5.1. Maps A →nd ,p B are in bijective correspondence

with pairs (P ,Q) of opens of A. For maps A →nd B the opens are

covering, i.e., ⊤ ≤ P ∨Q , and for maps A →p B they are disjoint,

i.e., P ∧Q ≤ ⊥.

This correspondence between pairs of opens and Boolean-valued

maps establishes two different perspectives on approximate decision-

making, one spatial and one more algorithmic in flavor. We think of

P as the “true” region andQ the “false” region. We can also think of

Q as representing the closed subspace complement Q of the open

8
While the “let-in” syntax for using the universal property (itself a sort of pattern

matching) of sums has not been formally described, hopefully it is clear how it can be

implemented via categorical semantics.

9
By “finite,” we always mean Kuratowski-finite [Johnstone 1977].
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subspace Q , in which case T ≤ P ∨Q corresponds to the subspace

inclusion Q ⊆ P , and P ∧Q ≤ ⊥ corresponds to P ⊆ Q .
Adding nondeterminism or partiality changes the behavior in

comparison to deterministic decision procedures. We can character-

ize this algebraically. In Set, B forms a Boolean algebra. Since the

functorDiscrete : Set → FSpc is full, faithful, and preserves binary
products and the terminal object, this lifts to an internal Boolean

algebra (within FSpc) on B the space. We can again lift these op-

erations by the forgetful functor FSpc → FSpcC ; for instance, the
lifted version of the Boolean “and” operation (&& : B×B→nd ,p B)
is potentially true if its argument potentially takes on values whose

conjunction is equal to true. However, the operations on B no

longer form a Boolean algebra within either FSpcnd or Fspcp :

Proposition 5.2. The space B does not form a Boolean algebra (with

its usual operations) within either FSpcnd or Fspcp .

Proof. In particular, there is the nondeterministic value both :

∗ →nd B and the partial value neither : ∗ →p B satisfying

both∗(· = true) = both∗(· = false) = ⊤

neither∗(· = true) = neither∗(· = false) = ⊥,

which implies that

both | | ! both = both , true

neither | | ! neither = neither , true,

whereas in a Boolean algebra there is the identity x | | !x = true. □

Though B does not form a Boolean algebra in FSpcnd ,p , it does
form a quasi-Boolean algebra:

Theorem 5.3. The space B forms a quasi-Boolean algebra (or De

Morgan algebra) in FSpcnd ,p , meaning that B with &&, | |, true, and
false forms a bounded distributive lattice, and ! is a De Morgan invo-

lution, in that it satisfies ! !x = x and !(x && y) = !x | | !y.

Proof sketch. It is instructive to observe how the operations act

on generalized points Γ →nd ,p B; we will use their equivalent

representation as pairs of opens of Γ. Observe that

(P1,Q1) && (P2,Q2) = (P1 ∧ P2,Q1 ∨Q2)

(P1,Q1) | | (P2,Q2) = (P1 ∨ P2,Q1 ∧Q2)

!(P ,Q) = (Q , P)

true = (⊤,⊥) false = (⊥,⊤).

We can use these equations to confirm the various laws, for instance,

! !(P ,Q) = !(Q , P) = (P ,Q). □

The argument also shows that B is a quasi-Boolean algebra in

FSpcnd and FSpcp as well. We will show that in each variant, it is

possible to quantify these approximate decision procedures over

compact-overt spaces.

5.1 Quantification over compact-overt spaces
When working with sets, if a predicate P on a set A is decidable

and if A is finite, then ∀a : A. P(a) and ∃a : A. P(a) are decidable.
The spatial analogue of the finite sets is the compact-overt spaces.

A space Σ, called the Sierpiński space, is useful in describing the

logic of opens: there is a correspondence O (A) � A →c Σ between

opens of A and Σ-valued continuous maps on A for any space A.
We can use this to describe opens via Σ-valued continuous maps.

We use the notation {x : A | e} where e is a Σ-valued term that may

mention x , i.e., x : A ⊢ e : Σ, to denote the open subspace {A | ⟦e⟧}.
For instance, we can define the open subspace {x : R | x × x < 2},

where (<) : R × R →c Σ. We will readily conflate opens and

Σ-valued continuous maps, implicitly converting between the two.

5.1.1 On compact-overt spaces
Definition 5.4 (Vickers 1997). A space K is compact if for every

space Γ, the functor −×⊤K : O (Γ) → O (Γ × K) has a right adjoint
∀K : O (Γ ×A) → O (Γ)10. Similarly, a space A is overt if for every

space Γ, − × ⊤A has a left adjoint ∃A : O (Γ ×A) → O (Γ). A space

is compact-overt if it is compact and overt.

These conditions are the definitions of universal and existential

quantification in terms of adjoints, viewing Γ as some context and

opens as truth values in a context. These adjunctions allow us to

define syntax for quantification of Σ-valued continuous maps on

compact-overt spaces:

Γ, x : K ⊢ e : Σ K compact

Γ ⊢ ∀x ∈ K . e : Σ

Γ, x : A ⊢ e : Σ A overt

Γ ⊢ ∃x ∈ A. e : Σ

For any compact-overt space K , for any Γ and P ,Q : O (Γ × K),
we have in Γ [Vickers 1997]

∀K (P ∨Q) ≤ ∀KP ∨ ∃KQ and ∀KP ∧ ∃KQ ≤ ∃K (P ∧Q).

These properties allow us to quantify over compact-overt spaces,

too. That is, we can add some syntax

Γ, x : K ⊢C e : B K compact-overt

Γ ⊢C ∀x ∈ K . e : B

Γ, x : K ⊢C e : B K compact-overt

Γ ⊢C ∃x ∈ K . e : B

that behaves as we would expect (for a quasi-Boolean algebra, at

least). We interpret this syntax by defining quantification function-

als of the type (Γ × K →C B) → (Γ →C B). For a compact-overt

space K , we define a universal-quantification functional

∀K : (Γ × K →C B) → (Γ →C B)

∀K (P ,Q) ≜ (∀KP , ∃KQ).

We confirm this definition works for C = nd because it preserves

covering: if ⊤ ≤ P ∨Q , then

⊤Γ ≤ ∀K (⊤Γ×K ) ≤ ∀K (P ∨Q) ≤ ∀KP ∨ ∃KQ .

Dually, it works for C = p since it preserves disjointness: if P ∧Q ≤

⊥, then

∀KP ∧ ∃KQ ≤ ∃K (P ∧Q) ≤ ∃K (⊥Γ×K ) ≤ ⊥Γ .

We can similarly define the existential-quantification functional

by ∃K (P ,Q) ≜ (∃KP ,∀KQ).
We make the notion that these operations are quantifiers precise

by showing that these quantification functionals are adjoints to a

weakening functional. The quasi-Boolean algebra on B determines

the preorder which we call truth order on maps A →nd ,p B: rep-

resenting maps as pairs of opens, we define (P1,Q1) ≦ (P2,Q2) if

and only if both P1 ≤ P2 and Q2 ≤ Q1.

For any spaces Γ and A, weakening ((− ◦ fst) : (Γ →nd ,p B) →

(Γ × A →nd ,p B)) is monotone with respect to truth order. The

quantifiers deserved to be called such:

10
This definition of compactness is equivalent to the more common one, that every

open cover has a finite subcover.
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Theorem 5.5. The existential- and universal-quantification func-

tionals are left and right adjoints to weakening, respectively, with

respect to truth order, i.e., ∃K ⊣ (− ◦ fst) ⊣ ∀K .

5.1.2 On compact-overt subspaces
Sometimes, the space that we might want to quantify over could

depend on some continuous variables in the context. For instance,

we may want to quantify a predicate f : R × R →C B over the

triangle in R × R bounded by (0, 0), (1, 0), and (0, 1). We will de-

scribe a formalism whereby it will be possible to write this as

∀x ∈ [0, 1]. ∀y ∈ [0, 1−x]. f (x ,y).We handle this situation by con-

sidering spaces whose points represent compact-overt subspaces

of some space.

There is a connection between overt spaces and the partiality-

and-nondeterminismmonadP♢: Every point ofP♢(A) corresponds

to an overt subspace of A11
. Similarly, for each space A there is a

powerspace P□(A) whose points correspond with compact sub-

spaces ofA [Vickers 2004, 2009].We summarize its salient character-

istics. There is a “necessity” modality □ : O (A) → O
(
P□(A)

)
that

distributes over meets and directed joins (analogous to the “possi-

bility” modality ♢ : O (A) → O
(
P♢(A)

)
for the lower powerspace).

Continuous maps Γ →c P□(A) are in bijective correspondence

with inverse image maps O (A) → O (Γ) that preserve meets and

directed joins. Like P♢, P□ is a strong monad.

The powerspace analogue of the compact-overt spaces is called

the Vietoris powerspace P□♢ [Vickers 1989]. Points of P□♢(A)
correspond to compact-overt subspaces of A. The space P□♢ has

both the possibility and necessity modalities that interact exactly

as with the compact-overt spaces.

We can add some additional syntax to make it easier to describe

opens with these modalities:

Γ ⊢ s : P♢(A) Γ, x : A ⊢ e : Σ

Γ ⊢ ∃x ∈ s . e : Σ

Γ ⊢ s : P□(A) Γ, x : A ⊢ e : Σ

Γ ⊢ ∀x ∈ s . e : Σ .

This syntax is interpreted using the correspondence Σ � P♢(∗) �
P□(∗) [Townsend 2006] via the strong monadic “bind” operations

of P♢ and P□. Accordingly, we can quantify our Booleans over

compact-overt subspaces as well in the same way, implementing

the syntax

Γ ⊢ s : P□♢(A) Γ, x : A ⊢C e : B

Γ ⊢C Qx ∈ s . e : B

where Q is either ∀ or ∃. Just as in the case of compact-overt spaces,

these definitions preserves both covering and disjointness, so C

can have any combination of partiality and nondeterminism.

Compact-overt subspaces form a convenient class of spaces over

which exhaustive reasoning is possible. The continuous image of

a compact-overt space is compact-overt (just as the image of a

finite set under any map is finite). Like finite subsets, compact-

overt subspaces are closed under finitary union but not necessarily

intersection. Naturally, a finite set viewed as a discrete space is

compact-overt.

11
Specifically, the points of P♢(A) are in bijective correspondence with the weakly

closed overt subspaces of A [Vickers 2007b, Theorem 32].

6 Implementation in Marshall
We implemented a pattern-matching construct as well as a library

for partial and/or nondeterministic decision procedures within the

Marshall programming language for exact real arithmetic [Bauer

2008], which is based on Abstract Stone Duality, a related, though

different, theory of constructive topology.

Marshall’s type system includes real (R), prop (Σ), finitary
products, and function types. Notably, it lacks discrete types such

as B and has no support for subspace types. However, we used

prop * prop to simulate B, using the correspondence with pairs

of opens described in Proposition 5.1.

Partiality is intrinsic to Marshall, whether in evaluation of terms

of type prop, or evaluation of real numbers defined by Dedekind

cuts where there is a gap between the left and right cuts. In the

course of adding a pattern-match construct and computational sup-

port for it, we added support for nondeterminism in this manner,

which was not previously available. Accordingly, Marshall effec-

tively allows programming in FSpcnd ,p .
Our pattern-match construct in Marshall has syntax and is typed

as follows:

∀i ∈ {1, . . . ,n},pi : prop ∀i ∈ {1, . . . ,n}, ei : t

(p1~>e1|| . . . ||pn~>en) : t

This is different, and substantially less general, than pattern match-

ing described in §4: there is no variable binding, and only finitely

many cases are permitted. Regardless, this construct suffices to

enable implementation of the approximate decision procedures of

§5, including quantification over those compact-overt spaces that

are available in Marshall, which are closed intervals with ratio-

nal endpoints (and implicitly, their finitary products), as well as

to implement simplified versions of examples in §7. The modified

version of Marshall and examples are available at https://github.
com/psg-mit/marshall-lics/. We describe the semantics of Marshall

and its extension in further detail in [Sherman et al. 2018].

7 Case studies
We describe two example tasks that require making decisions based

on continuous values, demonstrate how the techniques in this

work can be applied to solve them, and implement their solutions in

Marshall. In §7.1, a car must decide whether to cross an intersection.

This example shows the necessity of nondeterminism in decision-

making as well as how to reason about these computations. Example

§7.2 uses the formal logic from §5 for approximate root-finding.

7.1 Autonomous car approaching a yellow light
Sometimes, partiality is unacceptable. Consider an autonomous car

that is approaching a traffic light that has just turned yellow. To

ensure safety, the car must be outside of the intersection when the

light turns red. This requires the discrete decision to be made of

whether or not to proceed through the intersection. We will model

this problem with additional concrete detail and demonstrate that

it is impossible to do so deterministically, but with nondeterminism

it is possible to write a program with a formal safety guarantee.

Wemodel the car’s state when the light turns yellow as a position

and velocity, CarState ≜ {(x ,v) : R × R | 0 < v < vmax}, where

the velocity is positive but bounded. At the moment the light turns

yellow, the car may choose a constant acceleration in the range

Accel ≜ {R | amin < · < amax}, limited by the car’s physical

capabilities (with amin < 0 < amax). The continuous map pos :

https://github.com/psg-mit/marshall-lics/
https://github.com/psg-mit/marshall-lics/
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CarState × Accel →c R computes where the car will lie when the

light turns red, given the car’s state when the light turns yellow

and the chosen acceleration in the intervening period
12
. We define

the position 0 to be where the intersection begins and let w > 0

mark the end of the intersection. Thus, we define safe : O (R) by

safe ≜ (· < 0) ∨ (w < ·).

The problem of choosing an acceleration to safely navigate the

intersection is that of finding a function f : CarState →c {y :

CarState × Accel | safe(pos(y))} such that fst ◦ f = id.

Proposition 7.1. It is impossible to continuously choose an acceler-

ation to safely navigate the intersection (i.e., there is no continuous

map f as described above).

Proof. Note that {y : CarState × Accel | safe(pos(y))} has two con-

nected components, corresponding to whether the car is before the

intersection (pos(y) < 0) or past the intersection (w < pos(y)) when
the light turns red. If there were such an f , then since CarState
is connected, so would be the image of f , meaning that f must,

regardless of the initial car state, always make the same decision

of whether to stop for the intersection or proceed through. But if

the car’s initial state is sufficiently far back from the intersection, it

could not choose an acceleration that ensures it is past the intersec-

tion when the light turns red. Conversely, if the car is already past

the intersection, it cannot go backwards and thus cannot ensure it

is before the intersection when the light turns red. □

Proposition 7.2. However, if we permit nondeterminism, we can

produce amap f : CarState →nd {y : CarState×Accel | safe(pos(y))}
that nondeterministically chooses an acceleration that is always safe,

assuming some conditions on the constants amin, amax, vmax,w , and

the timeT between when the light turns yellow and when it turns red.

Proof. We outline one possible solution. Let ε > 0 be some buffer

distance. We can compute as a function of the initial car state

the necessary acceleration to proceed through the light and be at

position w + ε when the light turns red, as well as the necessary

deceleration to stop before the light at position −ε ,

ago : CarState →c R

ago(x ,v) ≜ max

(
0, 2(w + ε − x − vT )/T 2

)
astop : CarState →p R

astop(x ,v) ≜
v2

2(x + ε)
.

Note that ago(x ,v) is always nonnegative, and astop(x ,v) is always
nonpositive. We assemble the final solution as

f : CarState →nd {y : CarState × Accel | safe(pos(y))}

f (s) ≜ case(s)

{
ι[λc . ago(c) < amax] (c

′) ⇒ (c ′,ago(c
′))

ι[λc . amin < astop(c)] (c
′) ⇒ (c ′,astop(c

′))
.

Formal proof would be required to show that the output of each

branch is indeed within the required subspaces indicated by the

output type.

12
However, we enforce that velocity remains nonnegative, so if the car decelerates to

zero velocity before the light turns red, it remains stopped rather than going backwards.

let a_go = fun x : real => fun v : real =>

max 0 (2 * (w + eps - x - v * T) / (T * T));;

let a_stop = fun x : real => fun v : real =>

v * v / (2 * (x + eps));;

let accel = fun x : real => fun v : real =>

( a_go x v < a_max ~> a_go x v

|| a_stop x v > a_min ~> a_stop x v );;

Figure 4. A Marshall program that uses an overlapping pattern

match to nondeterministically compute the desired acceleration of

an autonomous car approaching a traffic light.

With sufficient conditions on the constants, we can prove that

the cases of f are covering, i.e., that it is always the case that either

the go or stop strategy is applicable
13
. □

This translates to the Marshall program in Fig. 4.

7.2 Approximate root-finding
Given any continuous function f : K →c R, where K is compact-

overt, then least one of the following statements must hold:

• There is some x ∈ K such that | f (x)| < ε .
• For every x ∈ K , f (x) , 0.

The following root-finding program nondeterministically computes

which statement holds, in the former case computing some x ∈ K
that is almost a root:

rootsf : ∗ →nd {∗ | ∀x ∈ K . f (x) , 0} + {x : K | | f (x)| < ε}

rootsf ≜ case(tt)

{
ι[∃x ∈ K . | f (x)| < ε] (y) ⇒ inr(simulate(y))

ι[∀x ∈ K . f (x) , 0] (n) ⇒ inl(n)
.

That the two cases cover follows from the logic in §5: the opens

| · | < ε and · , 0 cover R, and covering opens are stable under

pullback by continuous maps f and quantification over compact-

overt spaces K .
It remains to define simulate, which in general has the type

simulate : {∗ | ∃x ∈ A. U (x)} →nd {x : A | U (x)}

for any overt space A and openU of A (in rootsf , A is K andU is

λx . | f (x)| < ε). Given the existence of some values that satisfy a

propertyU of A, simulate can nondeterministically simulate those

values. It is defined by the inverse image map

simulate∗ : O ({A | U }) → O ({∗ | ∃AU })

simulate∗(V ) ≜ ∃A(V ∧U ).

The program rootsf accomplishes the task of approximate root-

finding over a very general class of functions with a very short

definition that works by composing constructs from §4 and §5. That

K is compact-overt means that it implements a general computa-

tional interface for exhaustive search.

The Marshall functional in Fig. 5 approximately decides whether

a real-valued function f : R→c R has roots on the interval [0, 1].

13
The cases cover so long asw + 2ε ≤ 1

2
T 2amax , i.e., it is possible to speed up from

a standstill to cross the intersection, and

vmax < −amin

(
T +

√
T 2 − 2 (½T 2amax −w − 2ε ) /amin

)
which guarantees that the car never goes so fast that it is too close to stop and also

cannot speed up to pass through the intersection in time.
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let exists_bool_interval = fun pred : real -> bool =>

(exists x : [0,1], is_true (pred x)) ~> tt

|| (forall x : [0,1], is_false (pred x)) ~> ff ;;

let is_0_eps = fun x : real =>

x < 0 \/ x > 0 ~> ff

|| -eps < x /\ x < eps ~> tt ;;

let roots_interval = fun f : real -> real =>

exists_bool_interval (fun x : real => is_0_eps (f x));;

Figure 5. A Marshall program that approximately computes

whether a continuous function f has roots on [0, 1].

8 Related work
Several works exploit the ability to quantify over compact-overt

spaces [Escardó 2004, 2007; Simpson 1998; Taylor 2010] to compute

values in R, B, or Σ, but not partial or nondeterministic Booleans.

FSpcnd ,p is equivalent to the category of suplattices (also known

as complete join semilattices), which is well-studied and its rela-

tion to FSpc well-documented [Ciraulo et al. 2013; Johnstone 2002;

Townsend 2006; Vickers 2004]. Vickers [1989] defines ·⊥ and P+♢,

but we are not aware of any previous explicit characterizations of

these constructions as strong monads induced by adjoints to the

forgetful functors to FSpcp and FSpcnd , respectively.
Several works describe related programming formalisms involv-

ing continuity, partiality, and nondeterminism. Marcial-Romero

and Escardó [2007] define a language with real-number compu-

tation that admits nontermination and has a foundational family

of functions rtesta ,b which map real numbers to nondeterministic

Boolean values, with a domain-theoretic semantics that uses Hoare

powerdomains (which roughly corresponds to P♢). Establishing to-

tality requires reasoning within their operational model, in contrast

to our framework, which optionally has denotational semantics for

total functions. Escardó [1996] defines a language “Real PCF” with

a denotational semantics in terms of cpo’s, in which there is an

operation known as a “parallel conditional,” which corresponds to

the internal “or” operation on the Sierpiński space ∨Σ : Σ×Σ →c Σ
in our formalism. Parallel conditionals are applied to construct

deterministic functions on the real numbers, which differs from

our examples, whose computations are total but nondeterministic.

Similarly, Tsuiki’s work on computation with Gray-code-based real

numbers 2002 is based on “indeterministic” computation, where

potentially nonterminating computations must be interleaved, and

those that terminate must agree in their answers.

We are unaware of any other notion of pattern matching that

permits patterns where determining membership is undecidable,

without jeopardizing totality. Müller [2009] describes a system

for exact real arithmetic that has a datatype of “lazy Booleans”

analogous to our partial Booleans, as well as a partial and nondeter-

ministic n-ary choose operation on lazy Booleans. dReal is a tool

that allows computation of approximate truth values over R [Gao

et al. 2012], allowing order comparisons and bounded quantifiers.

Our calculus of nondeterministic B-valued maps, when restricted

to R, provides similar computational abilities but with a different

foundational framework.

9 Conclusion
We presented a semantic framework for principled computation

with continuous values with partiality and/or nondeterminism. In

each variant, pattern-matching constructs facilitate construction of

programs, and the Booleans yield a formal logic for approximate

decision procedures. The programs we describe are executable,

thanks to their use of constructive topology, as demonstrated by

their implementation in our modified version of Marshall.
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