
Haskell and the Curry-Howard isomorphism

Part 1

Ben Sherman

January 27, 2014

Let’s play a game

I I’ll give you a Haskell type (e.g., a −> b −> a)

I Can you construct a (valid) value of that type?

I No cheating!

I No exceptions or non-termination
I (No undefined, error, unsafeCoerce, unsafePerformIO,

etc.)

a −> a

1 id :: a −> a

2 id x = x

a −> a

1 id :: a −> a

2 id x = x

a −> b −> (a,b)

1 (,) :: a −> b −> (a,b)

2 (,) x y = (x, y)

a −> b −> (a,b)

1 (,) :: a −> b −> (a,b)

2 (,) x y = (x, y)

(a,b) −> a

1 fst :: (a,b) −> a

2 fst (x, y) = x

(a,b) −> a

1 fst :: (a,b) −> a

2 fst (x, y) = x

a −> (a,b)

Nothing!

a −> (a,b)

Nothing!

(a −> b −> c) −> (b −> a −> c)

1 flip :: (a −> b −> c) −> b −> a −> c

2 flip f x y = f y x

(a −> b −> c) −> (b −> a −> c)

1 flip :: (a −> b −> c) −> b −> a −> c

2 flip f x y = f y x

Recall

1 data Maybe a = Just a | Nothing

2

3 data Either a b = Left a | Right b

a

No way!

a

No way!

Maybe a

1 nothing :: Maybe a

2 nothing = Nothing

Maybe a

1 nothing :: Maybe a

2 nothing = Nothing

a −> Either a b

1 left :: a −> Either a b

2 left x = Left x

a −> Either a b

1 left :: a −> Either a b

2 left x = Left x

Either a b −> a

Nope!

Either a b −> a

Nope!

(a −> c) −> (b −> c) −> Either a b −> c

1 either :: (a −> c) −> (b −> c) −> Either a b −> c

2 either f g (Left x) = f x

3 either f g (Right y) = g y

(a −> c) −> (b −> c) −> Either a b −> c

1 either :: (a −> c) −> (b −> c) −> Either a b −> c

2 either f g (Left x) = f x

3 either f g (Right y) = g y

Either (a −> c) (b −> c) −> a −> b −> c

1 eelim :: Either (a −> c) (b −> c) −> a −> b −> c

2 eelim (Left f) x y = f x

3 eelim (Right g) x y = g y

Either (a −> c) (b −> c) −> a −> b −> c

1 eelim :: Either (a −> c) (b −> c) −> a −> b −> c

2 eelim (Left f) x y = f x

3 eelim (Right g) x y = g y

(b −> c) −> (a −> b) −> (a −> c)

1 (.) :: (b −> c) −> (a −> b) −> a −> c

2 (.) g f x = g (f x)

(b −> c) −> (a −> b) −> (a −> c)

1 (.) :: (b −> c) −> (a −> b) −> a −> c

2 (.) g f x = g (f x)

We’ve been doing logic!

Haskell Logic

type variables : a proposition variables : p

types : Bool propositions : “Socrates is a man”

function types : a −> b implications (implies) : p → q

tuples : (a, b) conjunctions (and) : p ∧ q

either : Either a b disjunctions (or) : p ∨ q

type inhabitation : id :: a −> a truth : ` p → p

The type is the what. The value is the why.

We’ve been doing logic!

Haskell Logic

type variables : a proposition variables : p

types : Bool propositions : “Socrates is a man”

function types : a −> b implications (implies) : p → q

tuples : (a, b) conjunctions (and) : p ∧ q

either : Either a b disjunctions (or) : p ∨ q

type inhabitation : id :: a −> a truth : ` p → p

The type is the what. The value is the why.

We’ve been doing logic!

Haskell Logic

type variables : a proposition variables : p

types : Bool propositions : “Socrates is a man”

function types : a −> b implications (implies) : p → q

tuples : (a, b) conjunctions (and) : p ∧ q

either : Either a b disjunctions (or) : p ∨ q

type inhabitation : id :: a −> a truth : ` p → p

The type is the what. The value is the why.

We’ve been doing logic!

Haskell Logic

type variables : a proposition variables : p

types : Bool propositions : “Socrates is a man”

function types : a −> b implications (implies) : p → q

tuples : (a, b) conjunctions (and) : p ∧ q

either : Either a b disjunctions (or) : p ∨ q

type inhabitation : id :: a −> a truth : ` p → p

The type is the what. The value is the why.

We’ve been doing logic!

Haskell Logic

type variables : a proposition variables : p

types : Bool propositions : “Socrates is a man”

function types : a −> b implications (implies) : p → q

tuples : (a, b) conjunctions (and) : p ∧ q

either : Either a b disjunctions (or) : p ∨ q

type inhabitation : id :: a −> a truth : ` p → p

The type is the what. The value is the why.

We’ve been doing logic!

Haskell Logic

type variables : a proposition variables : p

types : Bool propositions : “Socrates is a man”

function types : a −> b implications (implies) : p → q

tuples : (a, b) conjunctions (and) : p ∧ q

either : Either a b disjunctions (or) : p ∨ q

type inhabitation : id :: a −> a truth : ` p → p

The type is the what. The value is the why.

We’ve been doing logic!

Haskell Logic

type variables : a proposition variables : p

types : Bool propositions : “Socrates is a man”

function types : a −> b implications (implies) : p → q

tuples : (a, b) conjunctions (and) : p ∧ q

either : Either a b disjunctions (or) : p ∨ q

type inhabitation : id :: a −> a truth : ` p → p

The type is the what. The value is the why.

Programs as proofs

I A type is inhabited if and only if the proposition that it

represents is true.

I Any value of a certain type is a proof that the corresponding

proposition is true!

I There is a dynamics of proof: We can run a proof by
computing its corresponding value. We can inspect and play
with them.

I Not possible in classical logic systems

Modus ponens is β reduction

In classical logic, modus ponens (or implication elimination) is

“handed down from up high”:

p, p → q

q
→elim

In Haskell, it’s just a consequence of how function application

works:
M :: a, (λx .P) :: a→ b

P[M/x] :: b
βred

Modus ponens is β reduction

In classical logic, modus ponens (or implication elimination) is

“handed down from up high”:

p, p → q

q
→elim

In Haskell, it’s just a consequence of how function application

works:
M :: a, (λx .P) :: a→ b

P[M/x] :: b
βred

Other laws are just Haskell features

I The Hilbert system of logic has additional axioms, while

natural deduction has additional rules of deduction.

I Haskell constructors give us introduction rules

I Pattern matching gives us elimination rules

I Lambda abstraction gives us additional Hilbert axioms (like

const)

The computational interpretation explains why we have these rules

and gives them meaning.

Other laws are just Haskell features

I The Hilbert system of logic has additional axioms, while

natural deduction has additional rules of deduction.

I Haskell constructors give us introduction rules

I Pattern matching gives us elimination rules

I Lambda abstraction gives us additional Hilbert axioms (like

const)

The computational interpretation explains why we have these rules

and gives them meaning.

What about negation?

In classical logic, we can always prove the law of the excluded

middle:

` p ∨ ¬p

Suppose we had a negation type function in Haskell:

Not :: ∗ −> ∗.
Do we expect to be able to find an inhabitant of

Either a (Not a)?

Law of the excluded middle

Suppose we do always have an inhabitant of Either a (Not a):

1 type PequalsNP = ...

2

3 explainMe :: Either PequalsNP (Not PequalsNP) −> String

4 explainMe (Left yes) = ‘‘Of course! Here’s why: ” ++ show yes

5 explainMe (Right no) = ‘‘Of course not, because ” ++ show no

(Being able to inspect proofs works against us here...)

Negation in constructive logic

Classical negation is too powerful in constructive logic. Let’s use a

more sensible definition of negation:

1 data Absurdity −−no constructors, empty type

2

3 type Not a = a −> Absurdity

Classical vs. constructive negation

Classical:

a←→ ¬(¬a)

Constructive:

1 −−forwards :: a −> Not (Not a)

2 −−forwards :: a −> Not a −> Absurdity

3 forwards :: a −> (a −> Absurdity) −> Absurdity

4 forwards x f = f x

5

6 −−backwards :: Not (Not a) −> a

7 −−backwards :: ((a −> Absurdity) −> Absurdity) −> a

Unfortunately, we can’t make an a with that!

Contrapositives

1 contra :: (a −> b) −> (Not b −> Not a)

2 −−contra :: (a −> b) −> (b −> Absurdity) −> (a −> Absurdity)

3 contra f g = g . f

(Not is a contravariant functor, and contra is its contramap)

Constructive negation

Just because something is not not true, doesn’t mean that it is

true!

Constructive negation from 30,000 ft.

You: “I’ve proved that any non-constant polynomial has a root!”

Me: “Great. I’d love to know a root for my polynomial P.”

You: “Let’s run my proof... Ah indeed, it would be absurd if P had

no roots!”

Me: “I think you only proved that it’s not not true that any

non-constant polynomial has a root.”

Warning: Haskell is not sound!

“Bottom” (⊥) inhabits all types:

represents absurdity, or an exception.

I exceptions and unsafe functions

I partial functions

I general recursion

Exceptions and unsafe functions

1 undefined :: a

2 error :: String −> a

3 unsafeCoerce :: a −> b

Partial functions

1 head :: [a] −> a

2 head (x : xs) = x

3

4 niceTry :: a

5 niceTry = head []

General recursion

When we define some x :: a, can we assume x :: a when we

prove x :: a?

1 −−unfortunately, this typechecks

2 x :: a

3 x = x

Just the beginning!

I We’d like a more expressive logic.

I In particular, it would be nice to make types that depend on

values:

1 fta :: (p :: Polynomial)

2 −> (x :: Complex Number , Equal (evaluate p x) 0)

I Dependent types

I Try out Agda and Idris!

I “Agda safety: we last proved false on April 18th 2012 .”

