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Let’s play a game

I I’ll give you a Haskell type (e.g., a −> b −> a)

I Can you construct a (valid) value of that type?

I No cheating!

I No exceptions or non-termination
I (No undefined, error, unsafeCoerce, unsafePerformIO,

etc.)



a −> a

1 id :: a −> a

2 id x = x



a −> a

1 id :: a −> a

2 id x = x



a −> b −> (a,b)

1 (,) :: a −> b −> (a,b)

2 (,) x y = (x, y)
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2 (,) x y = (x, y)



(a,b) −> a

1 fst :: (a,b) −> a

2 fst (x, y) = x



(a,b) −> a

1 fst :: (a,b) −> a

2 fst (x, y) = x



a −> (a,b)

Nothing!



a −> (a,b)

Nothing!



(a −> b −> c) −> (b −> a −> c)

1 flip :: (a −> b −> c) −> b −> a −> c

2 flip f x y = f y x



(a −> b −> c) −> (b −> a −> c)

1 flip :: (a −> b −> c) −> b −> a −> c

2 flip f x y = f y x



Recall

1 data Maybe a = Just a | Nothing

2

3 data Either a b = Left a | Right b



a

No way!



a

No way!



Maybe a

1 nothing :: Maybe a

2 nothing = Nothing



Maybe a

1 nothing :: Maybe a

2 nothing = Nothing



a −> Either a b

1 left :: a −> Either a b

2 left x = Left x



a −> Either a b

1 left :: a −> Either a b

2 left x = Left x



Either a b −> a

Nope!



Either a b −> a

Nope!



(a −> c) −> (b −> c) −> Either a b −> c

1 either :: (a −> c) −> (b −> c) −> Either a b −> c

2 either f g (Left x) = f x

3 either f g (Right y) = g y



(a −> c) −> (b −> c) −> Either a b −> c

1 either :: (a −> c) −> (b −> c) −> Either a b −> c

2 either f g (Left x) = f x

3 either f g (Right y) = g y



Either (a −> c) (b −> c) −> a −> b −> c

1 eelim :: Either (a −> c) (b −> c) −> a −> b −> c

2 eelim (Left f) x y = f x

3 eelim (Right g) x y = g y



Either (a −> c) (b −> c) −> a −> b −> c

1 eelim :: Either (a −> c) (b −> c) −> a −> b −> c

2 eelim (Left f) x y = f x

3 eelim (Right g) x y = g y



(b −> c) −> (a −> b) −> (a −> c)

1 (.) :: (b −> c) −> (a −> b) −> a −> c

2 (.) g f x = g (f x)



(b −> c) −> (a −> b) −> (a −> c)

1 (.) :: (b −> c) −> (a −> b) −> a −> c

2 (.) g f x = g (f x)



We’ve been doing logic!

Haskell Logic

type variables : a proposition variables : p

types : Bool propositions : “Socrates is a man”

function types : a −> b implications (implies) : p → q

tuples : (a, b) conjunctions (and) : p ∧ q

either : Either a b disjunctions (or) : p ∨ q

type inhabitation : id :: a −> a truth : ` p → p

The type is the what. The value is the why.
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Programs as proofs

I A type is inhabited if and only if the proposition that it

represents is true.

I Any value of a certain type is a proof that the corresponding

proposition is true!

I There is a dynamics of proof: We can run a proof by
computing its corresponding value. We can inspect and play
with them.

I Not possible in classical logic systems



Modus ponens is β reduction

In classical logic, modus ponens (or implication elimination) is

“handed down from up high”:

p, p → q

q
→elim

In Haskell, it’s just a consequence of how function application

works:
M :: a, (λx .P) :: a→ b

P[M/x ] :: b
βred
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Other laws are just Haskell features

I The Hilbert system of logic has additional axioms, while

natural deduction has additional rules of deduction.

I Haskell constructors give us introduction rules

I Pattern matching gives us elimination rules

I Lambda abstraction gives us additional Hilbert axioms (like

const)

The computational interpretation explains why we have these rules

and gives them meaning.
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What about negation?

In classical logic, we can always prove the law of the excluded

middle:

` p ∨ ¬p

Suppose we had a negation type function in Haskell:

Not :: ∗ −> ∗.
Do we expect to be able to find an inhabitant of

Either a (Not a)?



Law of the excluded middle

Suppose we do always have an inhabitant of Either a (Not a):

1 type PequalsNP = ...

2

3 explainMe :: Either PequalsNP (Not PequalsNP) −> String

4 explainMe (Left yes) = ‘‘Of course! Here’s why: ” ++ show yes

5 explainMe (Right no) = ‘‘Of course not, because ” ++ show no

(Being able to inspect proofs works against us here...)



Negation in constructive logic

Classical negation is too powerful in constructive logic. Let’s use a

more sensible definition of negation:

1 data Absurdity −−no constructors, empty type

2

3 type Not a = a −> Absurdity



Classical vs. constructive negation

Classical:

a←→ ¬(¬a)

Constructive:

1 −−forwards :: a −> Not (Not a)

2 −−forwards :: a −> Not a −> Absurdity

3 forwards :: a −> (a −> Absurdity) −> Absurdity

4 forwards x f = f x

5

6 −−backwards :: Not (Not a) −> a

7 −−backwards :: ((a −> Absurdity) −> Absurdity) −> a

Unfortunately, we can’t make an a with that!



Contrapositives

1 contra :: (a −> b) −> (Not b −> Not a)

2 −−contra :: (a −> b) −> (b −> Absurdity) −> (a −> Absurdity)

3 contra f g = g . f

(Not is a contravariant functor, and contra is its contramap)



Constructive negation

Just because something is not not true, doesn’t mean that it is

true!



Constructive negation from 30,000 ft.

You: “I’ve proved that any non-constant polynomial has a root!”

Me: “Great. I’d love to know a root for my polynomial P.”

You: “Let’s run my proof... Ah indeed, it would be absurd if P had

no roots!”

Me: “I think you only proved that it’s not not true that any

non-constant polynomial has a root.”



Warning: Haskell is not sound!

“Bottom” (⊥) inhabits all types:

represents absurdity, or an exception.

I exceptions and unsafe functions

I partial functions

I general recursion



Exceptions and unsafe functions

1 undefined :: a

2 error :: String −> a

3 unsafeCoerce :: a −> b



Partial functions

1 head :: [a] −> a

2 head (x : xs) = x

3

4 niceTry :: a

5 niceTry = head []



General recursion

When we define some x :: a, can we assume x :: a when we

prove x :: a?

1 −−unfortunately, this typechecks

2 x :: a

3 x = x



Just the beginning!

I We’d like a more expressive logic.

I In particular, it would be nice to make types that depend on

values:

1 fta :: (p :: Polynomial)

2 −> ( x :: Complex Number , Equal (evaluate p x) 0 )

I Dependent types

I Try out Agda and Idris!

I “Agda safety: we last proved false on April 18th 2012 .”


