
Optimal guitar tablature with dynamic programming

Ben Sherman

May 1, 2013

I have created a Haskell module that, given a MIDI file containing a guitar piece, and a guitar

Tuning, produces tablature (Tab) for that performance.

1 Overview

The program works by taking as input a Euterpea Performance, from which it identifies all the

notes (and their start and end points) that are played in a given piece. It then considers all the

times at which notes are struck (i.e. the start times of the notes). The program contains a large,

procedurally generated list, of size N (currently N ≈ 10, 000), of possible hand positions for fretting

a guitar. At each time when new notes are struck, the program determines which positions would

be enable the guitarist to strike the new notes, while holding the strings/notes that were previously

struck and must continue to be held. Let us represent the set of all fretting positions as P . There

are two scoring functions; the individual scoring function, SI : P → (−∞, 0], which rates how

comfortable a position is individually, and the transition scoring function, ST : P × P → (−∞, 0]

which rates the difficulty of transitioning from one position to another. Let us represent a guitar

tablature by a set of fretting positions {p1, . . . , pn} ⊆ P indexed according to the order in which

they are played. Then a guitar tablature is assigned a score based on the function

S({p1, . . . , pn}) =
n∑
i=1

SI(pi) +
n−1∑
i=1

ω(∆ti)ST (pi, pi+1),

where for each i, ∆ti is the time between the transition from position pi to pi+1, and where

ω : [0,∞) → [0,∞) is weighting function that more heavily weights transitions that occur in

shorter time periods (i.e., it is monotonically decreasing).

To produce “optimal” guitar tablature, we would like to find the tablature that maximizes

this scoring function out of all the possible tablatures that would satisfy the constraints (such as

playing all the notes, not hitting strings that were previously struck, etc.). However, it would be

computationally infeasible to try all the possibilities. For a piece of “size” n, where n is the number

of fretting positions in the piece, the scoring function is clearly O(n). However, we could have many

as Nn tablatures for such a piece, requiring O(Nn) time to compute the optimal tablature in this

way. This combinatorial explosion means that finding an optimal tablature could be very hard.

1

1.1 Algorithms

It is interesting to note that the entire problem has a “semi-local” nature. The constraint of not

hitting a previously struck note is fairly local, because notes are generally only held for short periods

of time, and the other constraints are completely local. The scoring function, too, is semi-local,

since only individual positions and pairs of neighboring positions are considered. If the problem

were completely local, we could determine an optimal fretting position for each point in the piece,

and aggregate these together to create an optimal tablature, and then the problem would be O(nN).

The problem is also very close to having an “optimal substructure.”

If the constraint of not hitting previously struck notes were absent, the problem could be solved

by dynamic programming. Suppose we choose to divide the piece into an earlier part and the later

part. Then there is only a single “interacting term” that contributes to the score, between the

last hand position of the earlier part, and the first fretting position of the later part. Thus, if we

know all the optimal tablatures for the earlier part, given a particular end position (at most N

tablatures), and if we know all the optimal tabs for the later part, given a certain start position

(at most N tablatures), we can piece together an optimal tablature in O(N2) time.

This yields a strategy for recursively breaking down the optimal tablature problem into smaller

subproblems. In the “base case” of a single position, there is no optimization to be done (we simply

take all possible positions). However, note that in general (if we’re not at the start or end of the

piece), we need to keep track of both the start and end positions for the subproblems. This means

that we must keep up to N2 tablatures for each subproblem, and then the merge operation would

take O(N4) time (for each possible start and end, there are up to N2 tablatures to check, and there

are up to N2 different possible start/end combinations). For a tablature of size n, if we choose to

build a balanced binary tree to compute this problem, the problem ends up taking approximately

O(nN4) time.

But we’ve noted that merging subproblems is easier if either of the subproblems at the start or

end, since this means have fewer interaction terms to consider when merging, and so we have less

to keep track of. If we simply build the tablature in a linear fashion forwards or backwards, then

each time we merge a subproblem, the “outer” one (the one including the start or end) has at most

N different tablatures, while the inner has at most N2 tablatures, and so the merging operation

takes O(N3) time. We still perform n − 1 merging operations, giving a complexity for the entire

algorithm of O(nN3).

In reality, however, we cannot ignore the constraint that previously struck notes that must be

held must not be hit again! My solution to this problem was simply to redefine the base case of

the dynamic programming algorithm described above. Instead of letting the base case be a single

position, we can partition a guitar performance into “chunks” where each note falls entirely in a

single chunk. That is, we partition notes by defining a graph between notes that are played, giving

edges between two notes if there is some time at which both notes are audible, and then we let the

base cases be the connected components of the graph.

These chunks are solved by brute force, i.e., checking all possible tablatures for the component.

This is unfortunate, because this takes time O(N `) for a chunks of size `. The saving grace, of

course, is that the possible fretting positions are more constrained by these constraints (i.e.., if a

2

hand position must keep a finger held and a string played, there’s going to be very few possibilities

for that position), so the “combinatorial explosion” might not be so severe. Also, in most guitar

performances I have examined, chunks are often contain a single hand position (i.e., a single time

at which notes are struck). Usually, notes are not held across measures, and so chunks are almost

always shorter than measures. So if chunks are always of size not greater than `, and there are

n distinct chunks, the running time of this algorithm is O(nN `). This algorithm is implemented

as the dynamic function in the TabGeneration module. The “base case” method of producing

brute-force solutions to a given chunk (with all possible start and endpoints) is implemented as

the listForChunk function, while the merging method is implemented by the function merge. The

merging method utilizes the parallelism afforded by Haskell’s Control.Parallel module, and could

benefit from parallelism of having up to N cores.

However, it could be technically possible for an entire piece to be a single chunk, which would

render this method computationally infeasible. For the situations where the chunks are very large,

there are algorithms that produce tablature that is not necessarily optimal. For example, the

selfishTab and smartFTab functions in the TabGeneration module build tablature by building

it forwards in time. selfishTab chooses each successive fretting position by simply taking the

position that satisfies the constraints (including notes that must be held from previous positions)

with the highest individual score. smartFTab also considers the “interaction term” between the

latest fretting position and the next one to be added.

However, these solutions are not optimal. I have also built an algorithm that searches for

optimal solutions using simulated annealing. The function mcmcAll in the SimulatedAnnealing

module takes as input a tablature that has already been produced, the tuning, a function that

gives the “inverse temperature” for each step, and a random seed. It then returns an infinite list of

tablatures that it generates according to a search algorithm which is something like a Monte Carlo

Markov chain. The algorithm randomly mutates the hand position at a certain point in the tab to

another suitable fretting position. It favors tabs that would result in a better score for the overall

tablature according to a sort of Boltzmann distribution. That is, the probability of changing to a

tab ρ is

Pr(ρ) ∝ eβS(ρ),

where β is the inverse temperature, and S(ρ) is the tab’s score. Thus if β is low, the mutation is

picked from an almost uniform distribution, while if β is high, favorable changes are much more

likely to be chosen. In reality, for each proposed change in fretting position to the tab, only a few

of the pieces of the tab’s score need to be recomputed, and so computing the change in score is

O(1). Since we check at most N positions for each mutation, each step of the algorithm is O(N).

Because the score of a tablature is heavily dependent on local effects, it’s beneficial for the

algorithm to change nearby positions at nearby times. Therefore, the algorithm keeps track of

which position was changed last, and it changes the next or previous position in the next tab (each

with probability 1/2). For optimal results in simulated annealing, we wish to have a temperature

profile that “heats” the tab some of the time, so that it can escape local minima, and that “cools”

the tab at other times, so that it can settle into a favorable position.

3

2 Features, Usage, and Examples

The main module is called Main, and so to use this module in GHCi, simply load that module.

To compile the module, I have been using the following command, which allows it to run using

multiple CPU cores:

ghc -O2 --make Main -threaded -rtsopts

2.1 Generating tablature

There are four main functions for generating tablature. Three of them generate tablature de novo:

dynamic, selfishTab, smartFTab :: Tuning -> Performance -> Tab

Each of these have been described in the section on algorithms. Notably, there is a list of possible

tunings in the Tuning module. I have reproduced that list in a readable format in Table 1.

Table 1: Tunings available by default

Variable name Command line name Tuning (low string to high string)

stdTuning Standard E A D G B E

halfStepDown HalfStepDown D]G]C]F]A]D]

fullStepDown FullStepDown D G C F A D

dropDTuning DropD D A D G B E

doubleDropD DoubleDropD D A D G B D

openG6Tuning OpenG6 D G D G B E

openCTuning OpenC C G C G C E

dadgadTuning DADGAD D A D G A D

The fourth main function that generates tablature is the simulated annealing algorithm, which

produces an infinite list of SAStates; each SAState includes a tablature and other information

necessary for continuing the simulated annealing.

mcmcAll :: Tab -> Tuning -> (Int -> Double) -> StdGen -> [SAState]

mcmcBest :: Int -> [SAState] -> Tab

mcmcAll takes an input tablature, the tuning that it’s in, the temperature profile (temperature

at each step), and a random number generator, and produces the infinite list of SAStates. The

mcmcBest n function looks at the first n elements of the list and returns the tab with the best

score.

2.2 Outputting Tablature

These two functions are the most important for outputting tablature:

4

annotatedTab :: Int -> PTime -> PTime -> Tab -> IO ()

tabPositions :: Tab -> IO ()

annotatedTab n acc meas tab outputs the tablature tab in an ASCII format. acc gives the

amount of time (in seconds) that should be covered by each “unit” in the tab. So higher values

of acc will make the tab more condensed, while lower values will make the tab more spread out,

and position the notes more accurately in time. meas indicates amount of time in a measure, and

n gives the number of measures to output on the same line in the tab.

tabPositions outputs a rough visualization of the hand position for each position played in

the tablature, showing a guitar string where numbers indicate pressed frets. Each number gives

the number of the finger, e.g., “2” represents the index finger.

2.3 Command line usage

From the command line, the Main module allows anyone to convenient generate tablature for a

given MIDI file. The usage is as such:

./Main filename tuning n acc meas

This program will open the MIDI file at filename, and will use the dynamic function to create a

tablature for the piece using the tuning specified in tuning (see Table 1 for possible values). It will

then output the tablature using tabOutput, where n is the number of measures on a single line,

meas is the duration of a measure, and acc is the amount of time in a single “unit” of the tab.

Most meas and acc must be input to the command line in the form of rationals, i.e. m%n indicates
m
n seconds.

2.4 Functions for convenience

The function midi :: String -> IO Music1 loads a MIDI file in to a Music1 data structure. The

function defPerform1 :: Music1 -> Performance creates a performance for such a music file.

The function midiToTab :: String -> Tuning -> IO Tab loads a MIDI file given the filename,

and creates a tablature for the piece with the given tuning (using the dynamic algorithm).

2.5 Examples

I have included some MIDI files to serve as examples. I am using a dual core computer so I have

the parameter “-N2” set, but it should be changed to reflect the number of cores on the machine.

For example, running

./Main midi/mist.mid DropD 3 1%8 3%1 +RTS -N2

will output the tab which is shown in Figure 1. You can also return the tablature for “Mist”

in GHCi using the function mistTab :: IO Tab. When compiled (and with the cutoffs I have

chosen), the dynamic programming algorithm takes about 22 seconds of “real time” (and 40 seconds

of CPU core-time) on my computer to generate the tablature for “Mist.” It does run almost twice

as quickly using two cores as using a single core.

I also have some other examples of working tablature.

5

./Main midi/cove.mid Standard 4 3%20 24%10 +RTS -N2

./Main midi/canon.mid DoubleDropD 2 1%8 4%1 +RTS -N2

./Main midi/im_yours.mid OpenG6 4 1%10 16%10 +RTS -N2

./Main midi/im_yours2.mid Standard 2 15%146 240%73 +RTS -N2

2.6 Parameters

Unfortunately, the number of possible fretting positions N is very large, and so actually computing

all possibilities for either the dynamic programming algorithm or for the simulated annealing is

very computationally expensive. There are several cutoff parameters in the module Parameters

which limit the computations that are done, usually simply by only investigating a subset of the

possible fretting positions (always the subset with the highest individual scores).

There are also a few parameters that affect the scoring of tablature in the Parameters mod-

ule, which essentially allows you to set the time-varying transition weighting function ω that was

mentioned earlier.

3 Implementation Details

This section describes some implementation details, particularly with regard to how the information

is represented in data structures.

The module makes rather heavy use of the Data.Map module, which is imported in the names-

pace M:

import qualified Data.Map as M

The strings of the guitar are represented by the datatype GString,

data GString = S1 | S2 | S3 | S4 | S5 | S6

Each possible fretting-hand conformation is represented as a Position:

type Position = M.Map Finger Fingering

data Finger = F1 | F2 | F3 | F4 | F5

type Fret = Int

data Fingering = Bar GString GString Fret | On GString Fret

Thus a Position gives the fingering for each finger that presses on guitar frets in that hand

conformation. Bar s1 s2 f means barring the fretboard from string s1 to s2 at fret f, while On

s f simply means pressing string s at fret f.

I have tried to enumerate most of the common positions in the list allPositions. To facilitate

this, I created two functions:

cross :: [Position] -> [Position] -> [Position]

copysOf :: Position -> [Position]

6

|--|--|--|

|-----1-3---1------------------------------------|-----1-3---1-------------------------------1----|-----1-3---1------------------------------------|

|-----0-0-----2---0-----0-2-0--------------------|-----0-0-----2---0-----0-2-0---0-2---2-0-------0|-----0-0-----2---0-----0-2-0--------------------|

|-----0-0-----------3---------3-2-0---0-2-------0|-----0-0-----------3---------0-----0------------|-----0-0-----------3---------3-2-0---0-2-------0|

|-----------------------------------0-----0-3----|--|-----------------------------------0-----0-3----|

|-0-----------------------0----------------------|-0-----------------------0---------------0------|-0-----------------------0----------------------|

...

|-----0-1-0---0-1-0-----------0-1-0---0----------|-----0-1-0---0-1-0-8---------0-1-0---0-----5----|-----0-1-0---0-1-0-1-0-3-1-0---0-1-0-1-0-------8|

|-3-----------------3-----3----------------------|---3-----------------------3--------------------|-3--|

|-5---------0-------------5---------0------------|-5---------0-------------5---------0------------|-5---------0-----------------0-----------0-7----|

|--|--|--|

|--|--|--|

|-0-----------0-----------0-----------0----------|-0-----------0-----------0-----------0----------|-0-----------0-----------0-----------0-----0----|

|10---8-5---3-5-3---3-5-3-1---3-0-------0-------8|10---8-5---3-5-3---3-5-3-5-3-------------------8|10---8-5---3-5-3---3-5-3-1---3-0-------0-------8|

|-------------------------------------3----------|-------------------------------810-810---810----|-------------------------------------3----------|

|-----------------0---------------0-0-----0------|-----------------0-----------0------------------|-----------------0---------------0-0-----0------|

|--10----|--|--10----|

|--|--|--|

|-0-----------0-----------0-----------0----------|-0-----------0-----------0-----------0----------|-0-----------0-----------0-----------0----------|

...

|-0-0-0-0-----------0-0-0-0-0-0-0-----------0-0-0|-0-0-0-0-----------0-0-0------------------------|-0-0-0-0-----------0-0-0-0-0-0-0-----------0-0-0|

|-0-0-0-0-----------0-0-0-0-0-0-0-----------0-0-0|-0-0-0-0-----------0-0-0-0-0-0-0-0-0-0-0-0-0-0-0|-0-0-0-0-----------0-0-0-0-0-0-0-----------0-0-0|

|-2-2-2-2-----------2-2-2------------------------|-5-5-5-5-----------5-5-5-------------0-0-0-0-0-0|-2-2-2-2-----------2-2-2------------------------|

|-0-0-0-0---0-0-0-0-0-0-0-0-0-0-0---0-0-0-0-0-0-0|-0-0-0-0---0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0|-0-0-0-0---0-0-0-0-0-0-0-0-0-0-0---0-0-0-0-0-0-0|

|-----------0-0-0-0-----------------0-0-0-0------|-----------0-0-0-0------------------------------|-----------0-0-0-0-----------------0-0-0-0------|

|-----------0-0-0-0-----------------0-0-0-0------|-----------0-0-0-0------------------------------|-----------0-0-0-0-----------------0-0-0-0------|

|-0-0-0-0-----------0-0-0------------------------|-3-3-3-3-----------3-3-3-3-3-3-3-----------3-3-3|-3-3-3-3-----------3-3-3-3-3-3-3-3-3------------|

|-0-0-0-0-----------0-0-0-0-0-0-0-0-0-0-0-0-0-0-0|-0-0-0-0-----------0-0-0-0-0-0-0-----------0-0-0|-0-0-0-0-----------0-0-0-0-0-0-0-0-0-0-0-0-0-0-0|

|-5-5-5-5-----------5-5-5-------------0-0-0-0-0-0|-2-2-2-2-----------2-2-2------------------------|-5-5-5-5-----------5-5-5-------------0-0-0-0-0-0|

|-0-0-0-0---0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0|-0-0-0-0---0-0-0-0-0-0-0-0-0-0-0---0-0-0-0-0-0-0|-0-0-0-0---0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0|

|-----------0-0-0-0------------------------------|-----------0-0-0-0-----------------0-0-0-0------|-----------0-0-0-0-----------------------0-0-0-0|

|-----------0-0-0-0------------------------------|-----------0-0-0-0-----------------0-0-0-0------|-----------0-0-0-0---------------------------0-0|

...

|--|--|--|

|-----1-3---1-------------------------------3----|-----1-3---1------------------------------------|--|

|-----0-0-----2---0-----0-2-0---0-2---2-0-------0|-----0-0-----2---0-----0-2-0--------------------|---0----|

|-----0-0-----------3---------0-----0------------|-----0-0-----------3---------3-2-0---0-2-------0|---0-0-2-0---0-2-0---------0-0-2-0---0-2-0------|

|--|-----------------------------------0-----0-3----|-3---------0-------3-----3---------0------------|

|-0-----------------------0---------------0------|-0-----------------------0----------------------|--|

|--|--|--|

|--|--|--|

|--|---0----|--|

|---0-0-2-0---0-2---3-2-0---0-0-2-0---0-2-0------|---0-0-2-0---0-2-0---------0-0-2-0---0-2-0------|---0-0-2-0---0-2---3-2-0---0-0-2-0---0-2-0-0----|

|-3---------0-----0-------3---------0-------3----|-3---------0-------3-----3---------0------------|-3---------0-----0-------3---------0-------0----|

|--|--|---0----|

Figure 1: Excerpts from the sample tablature generated by dynamic programming for John Butler

Trio’s “Mist.”

7

cross implements a sort of Cartesian product: given lists of positions as and bs, it returns the

set of all positions where the fingers press a combination of an a from as and a b from bs. The

copysOf function simply gives all of the translates of the position up and down the fretboard.

One of the main goals of the module is to enumerate all the suitable positions for playing a set

of notes in a given Tuning, where a Tuning simply gives the pitch of each string:

type Tuning = M.Map GString Pitch

However, what a suitable position might be often depends on the context; in many cases, it is desir-

able to allow a note that was struck earlier to continue playing, and therefore, some fingerings must

be held, and some strings must not be struck again. Thus, we also need to know the PosContext,

a description of the fingerings that must be held and the strings that must be allowed to ring:

type PosContext = (Position, StruckNotes)

type StruckNotes = M.Map GString PitchT

The datatype PitchT simply includes the start and stop times and pitch of a given note. The

function suitablePositions then takes in all of this information, and returns a list of all the

possible PosContexts that could result:

suitablePositions :: Tuning -> PosContext -> [PitchT] -> [PosContext]

A Tab is simply defined as a map of all the fretting position contexts for a musical piece, indexed

by the time at which those positions are held:

type Tab = M.Map PTime PosContext

4 Future Directions

There are many possible improvements that could be made to this module, including the following:

1. Currently, I have not generated enough fretting positions. Occasionally, guitar pieces that I

try will fail at some point, because they have some odd fretting position that is not in my

“bank” of possible positions.

2. Currently, if the module can’t find a fretting position, it fails and produces an error, and

cannot output the tab. It would be nice to have an ability for the module to perhaps be

unable to find positions some portions of the music, but still output tablature for the rest of

the music.

3. The individual and transition scoring functions are very rudimentary currently. It would

help to have factors that take into account factors like the angle of the hand, and scrunching

or spreading of fingers, and to better understand changes between hand positions. Also, I

haven’t spent much effort trying to balance the scoring functions, and it’s possible that some

scoring functions are much too heavily weighted.

8

